7 RBTS PAPER(CHEMISTRY)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
7 RBTS PAPER

164222 For the reaction,
\( \mathrm{N}_2+3 \mathrm{H}_2 \rightarrow 2 \mathrm{NH}_3 \)
\( \text { if } \frac{\mathrm{d}\left(\mathrm{NH}_3\right)}{\mathrm{dt}}=2.0 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1} \)
the value of \(-\frac{\mathrm{d}\left(\mathrm{H}_2\right)}{\mathrm{dt}}\) would be :

1 \(4 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
2 \(6 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
3 \(1 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
4 \(3 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
7 RBTS PAPER

164237 \(3 A \rightarrow 2 B\), rate of reaction \(\frac{d[B]}{d t}\) is equal to :

1 \(\frac{-3}{2} \frac{d[A]}{d f}\)
2 \(\frac{-2}{3} \frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}\)
3 \(-\frac{1}{3} \frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}\)
4 \(+2 \frac{d[A]}{d t}\)
7 RBTS PAPER

164223 The \(t_{1 / 2}\) for a zero order reaction at the initial concentration of \(6 \times 10^{-3} \mathrm{M}\) is one minute at \(27^{\circ} \mathrm{C}\). The rate constant at \(27^{\circ} \mathrm{C}\) in \(\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\) is :

1 \(3 \times 10^{-4}\)
2 \(6 \times 10^{-4}\)
3 \(5 \times 10^{-5}\)
4 \(5 \times 10^{-4}\)
7 RBTS PAPER

164224 In respect of the equation \(\mathrm{K}=\mathrm{Ae}^{-\mathrm{Ea} / \mathrm{RT}^2}\) in chemical kinetics, which one of the following statements is correct :

1 \(A\) is adsorption factor
2 Ea is energy of activation
3 R is Rydberg constant
4 \(\mathrm{k}\) is equilibrium constant.
7 RBTS PAPER

164222 For the reaction,
\( \mathrm{N}_2+3 \mathrm{H}_2 \rightarrow 2 \mathrm{NH}_3 \)
\( \text { if } \frac{\mathrm{d}\left(\mathrm{NH}_3\right)}{\mathrm{dt}}=2.0 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1} \)
the value of \(-\frac{\mathrm{d}\left(\mathrm{H}_2\right)}{\mathrm{dt}}\) would be :

1 \(4 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
2 \(6 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
3 \(1 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
4 \(3 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
7 RBTS PAPER

164237 \(3 A \rightarrow 2 B\), rate of reaction \(\frac{d[B]}{d t}\) is equal to :

1 \(\frac{-3}{2} \frac{d[A]}{d f}\)
2 \(\frac{-2}{3} \frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}\)
3 \(-\frac{1}{3} \frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}\)
4 \(+2 \frac{d[A]}{d t}\)
7 RBTS PAPER

164223 The \(t_{1 / 2}\) for a zero order reaction at the initial concentration of \(6 \times 10^{-3} \mathrm{M}\) is one minute at \(27^{\circ} \mathrm{C}\). The rate constant at \(27^{\circ} \mathrm{C}\) in \(\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\) is :

1 \(3 \times 10^{-4}\)
2 \(6 \times 10^{-4}\)
3 \(5 \times 10^{-5}\)
4 \(5 \times 10^{-4}\)
7 RBTS PAPER

164224 In respect of the equation \(\mathrm{K}=\mathrm{Ae}^{-\mathrm{Ea} / \mathrm{RT}^2}\) in chemical kinetics, which one of the following statements is correct :

1 \(A\) is adsorption factor
2 Ea is energy of activation
3 R is Rydberg constant
4 \(\mathrm{k}\) is equilibrium constant.
7 RBTS PAPER

164222 For the reaction,
\( \mathrm{N}_2+3 \mathrm{H}_2 \rightarrow 2 \mathrm{NH}_3 \)
\( \text { if } \frac{\mathrm{d}\left(\mathrm{NH}_3\right)}{\mathrm{dt}}=2.0 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1} \)
the value of \(-\frac{\mathrm{d}\left(\mathrm{H}_2\right)}{\mathrm{dt}}\) would be :

1 \(4 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
2 \(6 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
3 \(1 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
4 \(3 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
7 RBTS PAPER

164237 \(3 A \rightarrow 2 B\), rate of reaction \(\frac{d[B]}{d t}\) is equal to :

1 \(\frac{-3}{2} \frac{d[A]}{d f}\)
2 \(\frac{-2}{3} \frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}\)
3 \(-\frac{1}{3} \frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}\)
4 \(+2 \frac{d[A]}{d t}\)
7 RBTS PAPER

164223 The \(t_{1 / 2}\) for a zero order reaction at the initial concentration of \(6 \times 10^{-3} \mathrm{M}\) is one minute at \(27^{\circ} \mathrm{C}\). The rate constant at \(27^{\circ} \mathrm{C}\) in \(\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\) is :

1 \(3 \times 10^{-4}\)
2 \(6 \times 10^{-4}\)
3 \(5 \times 10^{-5}\)
4 \(5 \times 10^{-4}\)
7 RBTS PAPER

164224 In respect of the equation \(\mathrm{K}=\mathrm{Ae}^{-\mathrm{Ea} / \mathrm{RT}^2}\) in chemical kinetics, which one of the following statements is correct :

1 \(A\) is adsorption factor
2 Ea is energy of activation
3 R is Rydberg constant
4 \(\mathrm{k}\) is equilibrium constant.
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
7 RBTS PAPER

164222 For the reaction,
\( \mathrm{N}_2+3 \mathrm{H}_2 \rightarrow 2 \mathrm{NH}_3 \)
\( \text { if } \frac{\mathrm{d}\left(\mathrm{NH}_3\right)}{\mathrm{dt}}=2.0 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1} \)
the value of \(-\frac{\mathrm{d}\left(\mathrm{H}_2\right)}{\mathrm{dt}}\) would be :

1 \(4 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
2 \(6 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
3 \(1 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
4 \(3 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
7 RBTS PAPER

164237 \(3 A \rightarrow 2 B\), rate of reaction \(\frac{d[B]}{d t}\) is equal to :

1 \(\frac{-3}{2} \frac{d[A]}{d f}\)
2 \(\frac{-2}{3} \frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}\)
3 \(-\frac{1}{3} \frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}\)
4 \(+2 \frac{d[A]}{d t}\)
7 RBTS PAPER

164223 The \(t_{1 / 2}\) for a zero order reaction at the initial concentration of \(6 \times 10^{-3} \mathrm{M}\) is one minute at \(27^{\circ} \mathrm{C}\). The rate constant at \(27^{\circ} \mathrm{C}\) in \(\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\) is :

1 \(3 \times 10^{-4}\)
2 \(6 \times 10^{-4}\)
3 \(5 \times 10^{-5}\)
4 \(5 \times 10^{-4}\)
7 RBTS PAPER

164224 In respect of the equation \(\mathrm{K}=\mathrm{Ae}^{-\mathrm{Ea} / \mathrm{RT}^2}\) in chemical kinetics, which one of the following statements is correct :

1 \(A\) is adsorption factor
2 Ea is energy of activation
3 R is Rydberg constant
4 \(\mathrm{k}\) is equilibrium constant.