7 RBTS PAPER(CHEMISTRY)
7 RBTS PAPER

164225 Activation energy (Ea) and rate constants ( \(k_1\) and \(k_2\) ) of a chemical reaction at two different temperatures \(\left(T_1\right.\) and \(\left.T_2\right)\) are related by :

1 \(\ln \frac{\mathrm{k}_2}{\mathrm{k}_1}=\frac{-\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_1}-\frac{1}{\mathrm{~T}_2}\right)\)
2 \(\ln \frac{\mathrm{k}_2}{\mathrm{k}_1}=\frac{-\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_2}+\frac{1}{\mathrm{~T}_1}\right)\)
3 \(\ln \frac{k_2}{k_1}=\frac{E_a}{R}\left(\frac{1}{T_2}+\frac{1}{T_1}\right)\)
4 \(\ln \frac{\mathrm{k}_2}{\mathrm{k}_1}=\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_1}-\frac{1}{\mathrm{~T}_2}\right)\)
7 RBTS PAPER

164226 Half-Life period of a first order reaction is \(\mathbf{1 3 8 6}\) seconds. The specific rate constant of the reaction is :

1 \(0.5 \times 10^2 \mathrm{~s}^{-1}\)
2 \(0.5 \times 10^{-3} \mathrm{sec}^{-1}\)
3 \(2.0 \times 10^{-2} \mathrm{sec}^{-1}\)
4 \(5.0 \times 10^{-3} \mathrm{sec}^{-1}\)
7 RBTS PAPER

164227 The half life of a substance in a certain enzyme catalysed reaction is \(138 \mathrm{~s}\). The time required for the concentration of the substance to fall from1.28 \(\mathrm{mg} \mathrm{L}^{-1}\) to \(0.04 \mathrm{mg} \mathrm{L}^{-1}\) is :

1 \(690 \mathrm{~s}\)
2 \(276 \mathrm{~s}\)
3 \(414 \mathrm{~s}\)
4 \(552 \mathrm{~s}\)
7 RBTS PAPER

164228 In a zero-order reaction for every \(10^{\circ} \mathrm{C}\) rise of temperature, the rate is doubled, if the temperature is increased from \(10^{\circ} \mathrm{C}\) to \(100^{\circ} \mathrm{C}\), the rate of reaction will become :

1 256 time
2 512 time
3 64 time
4 128 time
7 RBTS PAPER

164229 For reaction \(a A \rightarrow x P\), when \([A]=2.2 \mathrm{mM}\), the rate was found to be \(2.4 \mathrm{mM} \mathrm{s}^{-1}\). On reducing concentration of A to half, the rate changes to 0.6 \(\mathrm{m} \mathrm{M} \mathrm{s} \mathbf{~}^{-1}\). The order of reaction with respect to \(A\) is:

1 1.5
2 2.0
3 2.5
4 3.0
7 RBTS PAPER

164225 Activation energy (Ea) and rate constants ( \(k_1\) and \(k_2\) ) of a chemical reaction at two different temperatures \(\left(T_1\right.\) and \(\left.T_2\right)\) are related by :

1 \(\ln \frac{\mathrm{k}_2}{\mathrm{k}_1}=\frac{-\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_1}-\frac{1}{\mathrm{~T}_2}\right)\)
2 \(\ln \frac{\mathrm{k}_2}{\mathrm{k}_1}=\frac{-\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_2}+\frac{1}{\mathrm{~T}_1}\right)\)
3 \(\ln \frac{k_2}{k_1}=\frac{E_a}{R}\left(\frac{1}{T_2}+\frac{1}{T_1}\right)\)
4 \(\ln \frac{\mathrm{k}_2}{\mathrm{k}_1}=\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_1}-\frac{1}{\mathrm{~T}_2}\right)\)
7 RBTS PAPER

164226 Half-Life period of a first order reaction is \(\mathbf{1 3 8 6}\) seconds. The specific rate constant of the reaction is :

1 \(0.5 \times 10^2 \mathrm{~s}^{-1}\)
2 \(0.5 \times 10^{-3} \mathrm{sec}^{-1}\)
3 \(2.0 \times 10^{-2} \mathrm{sec}^{-1}\)
4 \(5.0 \times 10^{-3} \mathrm{sec}^{-1}\)
7 RBTS PAPER

164227 The half life of a substance in a certain enzyme catalysed reaction is \(138 \mathrm{~s}\). The time required for the concentration of the substance to fall from1.28 \(\mathrm{mg} \mathrm{L}^{-1}\) to \(0.04 \mathrm{mg} \mathrm{L}^{-1}\) is :

1 \(690 \mathrm{~s}\)
2 \(276 \mathrm{~s}\)
3 \(414 \mathrm{~s}\)
4 \(552 \mathrm{~s}\)
7 RBTS PAPER

164228 In a zero-order reaction for every \(10^{\circ} \mathrm{C}\) rise of temperature, the rate is doubled, if the temperature is increased from \(10^{\circ} \mathrm{C}\) to \(100^{\circ} \mathrm{C}\), the rate of reaction will become :

1 256 time
2 512 time
3 64 time
4 128 time
7 RBTS PAPER

164229 For reaction \(a A \rightarrow x P\), when \([A]=2.2 \mathrm{mM}\), the rate was found to be \(2.4 \mathrm{mM} \mathrm{s}^{-1}\). On reducing concentration of A to half, the rate changes to 0.6 \(\mathrm{m} \mathrm{M} \mathrm{s} \mathbf{~}^{-1}\). The order of reaction with respect to \(A\) is:

1 1.5
2 2.0
3 2.5
4 3.0
7 RBTS PAPER

164225 Activation energy (Ea) and rate constants ( \(k_1\) and \(k_2\) ) of a chemical reaction at two different temperatures \(\left(T_1\right.\) and \(\left.T_2\right)\) are related by :

1 \(\ln \frac{\mathrm{k}_2}{\mathrm{k}_1}=\frac{-\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_1}-\frac{1}{\mathrm{~T}_2}\right)\)
2 \(\ln \frac{\mathrm{k}_2}{\mathrm{k}_1}=\frac{-\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_2}+\frac{1}{\mathrm{~T}_1}\right)\)
3 \(\ln \frac{k_2}{k_1}=\frac{E_a}{R}\left(\frac{1}{T_2}+\frac{1}{T_1}\right)\)
4 \(\ln \frac{\mathrm{k}_2}{\mathrm{k}_1}=\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_1}-\frac{1}{\mathrm{~T}_2}\right)\)
7 RBTS PAPER

164226 Half-Life period of a first order reaction is \(\mathbf{1 3 8 6}\) seconds. The specific rate constant of the reaction is :

1 \(0.5 \times 10^2 \mathrm{~s}^{-1}\)
2 \(0.5 \times 10^{-3} \mathrm{sec}^{-1}\)
3 \(2.0 \times 10^{-2} \mathrm{sec}^{-1}\)
4 \(5.0 \times 10^{-3} \mathrm{sec}^{-1}\)
7 RBTS PAPER

164227 The half life of a substance in a certain enzyme catalysed reaction is \(138 \mathrm{~s}\). The time required for the concentration of the substance to fall from1.28 \(\mathrm{mg} \mathrm{L}^{-1}\) to \(0.04 \mathrm{mg} \mathrm{L}^{-1}\) is :

1 \(690 \mathrm{~s}\)
2 \(276 \mathrm{~s}\)
3 \(414 \mathrm{~s}\)
4 \(552 \mathrm{~s}\)
7 RBTS PAPER

164228 In a zero-order reaction for every \(10^{\circ} \mathrm{C}\) rise of temperature, the rate is doubled, if the temperature is increased from \(10^{\circ} \mathrm{C}\) to \(100^{\circ} \mathrm{C}\), the rate of reaction will become :

1 256 time
2 512 time
3 64 time
4 128 time
7 RBTS PAPER

164229 For reaction \(a A \rightarrow x P\), when \([A]=2.2 \mathrm{mM}\), the rate was found to be \(2.4 \mathrm{mM} \mathrm{s}^{-1}\). On reducing concentration of A to half, the rate changes to 0.6 \(\mathrm{m} \mathrm{M} \mathrm{s} \mathbf{~}^{-1}\). The order of reaction with respect to \(A\) is:

1 1.5
2 2.0
3 2.5
4 3.0
7 RBTS PAPER

164225 Activation energy (Ea) and rate constants ( \(k_1\) and \(k_2\) ) of a chemical reaction at two different temperatures \(\left(T_1\right.\) and \(\left.T_2\right)\) are related by :

1 \(\ln \frac{\mathrm{k}_2}{\mathrm{k}_1}=\frac{-\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_1}-\frac{1}{\mathrm{~T}_2}\right)\)
2 \(\ln \frac{\mathrm{k}_2}{\mathrm{k}_1}=\frac{-\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_2}+\frac{1}{\mathrm{~T}_1}\right)\)
3 \(\ln \frac{k_2}{k_1}=\frac{E_a}{R}\left(\frac{1}{T_2}+\frac{1}{T_1}\right)\)
4 \(\ln \frac{\mathrm{k}_2}{\mathrm{k}_1}=\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_1}-\frac{1}{\mathrm{~T}_2}\right)\)
7 RBTS PAPER

164226 Half-Life period of a first order reaction is \(\mathbf{1 3 8 6}\) seconds. The specific rate constant of the reaction is :

1 \(0.5 \times 10^2 \mathrm{~s}^{-1}\)
2 \(0.5 \times 10^{-3} \mathrm{sec}^{-1}\)
3 \(2.0 \times 10^{-2} \mathrm{sec}^{-1}\)
4 \(5.0 \times 10^{-3} \mathrm{sec}^{-1}\)
7 RBTS PAPER

164227 The half life of a substance in a certain enzyme catalysed reaction is \(138 \mathrm{~s}\). The time required for the concentration of the substance to fall from1.28 \(\mathrm{mg} \mathrm{L}^{-1}\) to \(0.04 \mathrm{mg} \mathrm{L}^{-1}\) is :

1 \(690 \mathrm{~s}\)
2 \(276 \mathrm{~s}\)
3 \(414 \mathrm{~s}\)
4 \(552 \mathrm{~s}\)
7 RBTS PAPER

164228 In a zero-order reaction for every \(10^{\circ} \mathrm{C}\) rise of temperature, the rate is doubled, if the temperature is increased from \(10^{\circ} \mathrm{C}\) to \(100^{\circ} \mathrm{C}\), the rate of reaction will become :

1 256 time
2 512 time
3 64 time
4 128 time
7 RBTS PAPER

164229 For reaction \(a A \rightarrow x P\), when \([A]=2.2 \mathrm{mM}\), the rate was found to be \(2.4 \mathrm{mM} \mathrm{s}^{-1}\). On reducing concentration of A to half, the rate changes to 0.6 \(\mathrm{m} \mathrm{M} \mathrm{s} \mathbf{~}^{-1}\). The order of reaction with respect to \(A\) is:

1 1.5
2 2.0
3 2.5
4 3.0
7 RBTS PAPER

164225 Activation energy (Ea) and rate constants ( \(k_1\) and \(k_2\) ) of a chemical reaction at two different temperatures \(\left(T_1\right.\) and \(\left.T_2\right)\) are related by :

1 \(\ln \frac{\mathrm{k}_2}{\mathrm{k}_1}=\frac{-\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_1}-\frac{1}{\mathrm{~T}_2}\right)\)
2 \(\ln \frac{\mathrm{k}_2}{\mathrm{k}_1}=\frac{-\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_2}+\frac{1}{\mathrm{~T}_1}\right)\)
3 \(\ln \frac{k_2}{k_1}=\frac{E_a}{R}\left(\frac{1}{T_2}+\frac{1}{T_1}\right)\)
4 \(\ln \frac{\mathrm{k}_2}{\mathrm{k}_1}=\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_1}-\frac{1}{\mathrm{~T}_2}\right)\)
7 RBTS PAPER

164226 Half-Life period of a first order reaction is \(\mathbf{1 3 8 6}\) seconds. The specific rate constant of the reaction is :

1 \(0.5 \times 10^2 \mathrm{~s}^{-1}\)
2 \(0.5 \times 10^{-3} \mathrm{sec}^{-1}\)
3 \(2.0 \times 10^{-2} \mathrm{sec}^{-1}\)
4 \(5.0 \times 10^{-3} \mathrm{sec}^{-1}\)
7 RBTS PAPER

164227 The half life of a substance in a certain enzyme catalysed reaction is \(138 \mathrm{~s}\). The time required for the concentration of the substance to fall from1.28 \(\mathrm{mg} \mathrm{L}^{-1}\) to \(0.04 \mathrm{mg} \mathrm{L}^{-1}\) is :

1 \(690 \mathrm{~s}\)
2 \(276 \mathrm{~s}\)
3 \(414 \mathrm{~s}\)
4 \(552 \mathrm{~s}\)
7 RBTS PAPER

164228 In a zero-order reaction for every \(10^{\circ} \mathrm{C}\) rise of temperature, the rate is doubled, if the temperature is increased from \(10^{\circ} \mathrm{C}\) to \(100^{\circ} \mathrm{C}\), the rate of reaction will become :

1 256 time
2 512 time
3 64 time
4 128 time
7 RBTS PAPER

164229 For reaction \(a A \rightarrow x P\), when \([A]=2.2 \mathrm{mM}\), the rate was found to be \(2.4 \mathrm{mM} \mathrm{s}^{-1}\). On reducing concentration of A to half, the rate changes to 0.6 \(\mathrm{m} \mathrm{M} \mathrm{s} \mathbf{~}^{-1}\). The order of reaction with respect to \(A\) is:

1 1.5
2 2.0
3 2.5
4 3.0