DisplacementCurrent
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Electromagnetic Wave

155539 If ' $c$ ' is the speed of electromagnetic waves in vacuum, then their speed in a medium of dielectric constant ' $K$ ' and relative permittivity ' $\mu_{\mathrm{r}}$ ' is

1 $\frac{1}{\sqrt{\mu_{\mathrm{r}} \mathrm{K}}}$
2 $c \sqrt{\mu_{\mathrm{r}} \mathrm{K}}$
3 $\frac{c}{\sqrt{\mu_{r} \mathrm{~K}}}$
4 $\frac{\mathrm{K}}{\sqrt{\mu_{\mathrm{r}} \mathrm{c}}}$
Electromagnetic Wave

155541 The electric field portion of an electromagnetic wave is given by (all variables in SI units ) $E=10^{-4} \sin \left(6 \times 10^{5} t-0.01 x\right)$. The frequency (f) and the speed $(v)$ of electromagnetic wave are

1 $\mathrm{f}=30 / \pi \mathrm{kHz}$ and $\mathrm{v}=1.5 \times 10^{7} \mathrm{~m} / \mathrm{s}$
2 $\mathrm{f}=90 / \pi \mathrm{kHz}$ and $\mathrm{v}=6.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$
3 $\mathrm{f}=300 / \pi \mathrm{kHz}$ and $\mathrm{v}=6.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$
4 $\mathrm{f}=600 / \pi \mathrm{kHz}$ and $\mathrm{v}=7.5 \times 10^{7} \mathrm{~m} / \mathrm{s}$
5 $\mathrm{f}=900 / \pi \mathrm{kHz}$ and $\mathrm{v}=8.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$
Electromagnetic Wave

155543 In an electromagnetic wave, the electric and magnetic fields are $100 \mathrm{~V} / \mathrm{m}$ and $0.265 \mathrm{~A} / \mathrm{m}$. The maximum energy flow is

1 $26.5 \mathrm{~W} / \mathrm{m}^{2}$
2 $36.5 \mathrm{~W} / \mathrm{m}^{2}$
3 $46.7 \mathrm{~W} / \mathrm{m}^{2}$
4 $765 \mathrm{~W} / \mathrm{m}^{2}$
Electromagnetic Wave

155550 In a plane electromagnetic wave, the electric field of amplitude $1 \mathrm{Vm}^{-1}$ varies with time in free space. The average energy density of magnetic field is (in $\mathbf{J m}^{-3}$ )

1 $8.86 \times 10^{-12}$
2 $4.43 \times 10^{-12}$
3 $17.72 \times 10^{-12}$
4 $2.21 \times 10^{-12}$
5 $1.11 \times 10^{-12}$
Electromagnetic Wave

155539 If ' $c$ ' is the speed of electromagnetic waves in vacuum, then their speed in a medium of dielectric constant ' $K$ ' and relative permittivity ' $\mu_{\mathrm{r}}$ ' is

1 $\frac{1}{\sqrt{\mu_{\mathrm{r}} \mathrm{K}}}$
2 $c \sqrt{\mu_{\mathrm{r}} \mathrm{K}}$
3 $\frac{c}{\sqrt{\mu_{r} \mathrm{~K}}}$
4 $\frac{\mathrm{K}}{\sqrt{\mu_{\mathrm{r}} \mathrm{c}}}$
Electromagnetic Wave

155541 The electric field portion of an electromagnetic wave is given by (all variables in SI units ) $E=10^{-4} \sin \left(6 \times 10^{5} t-0.01 x\right)$. The frequency (f) and the speed $(v)$ of electromagnetic wave are

1 $\mathrm{f}=30 / \pi \mathrm{kHz}$ and $\mathrm{v}=1.5 \times 10^{7} \mathrm{~m} / \mathrm{s}$
2 $\mathrm{f}=90 / \pi \mathrm{kHz}$ and $\mathrm{v}=6.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$
3 $\mathrm{f}=300 / \pi \mathrm{kHz}$ and $\mathrm{v}=6.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$
4 $\mathrm{f}=600 / \pi \mathrm{kHz}$ and $\mathrm{v}=7.5 \times 10^{7} \mathrm{~m} / \mathrm{s}$
5 $\mathrm{f}=900 / \pi \mathrm{kHz}$ and $\mathrm{v}=8.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$
Electromagnetic Wave

155543 In an electromagnetic wave, the electric and magnetic fields are $100 \mathrm{~V} / \mathrm{m}$ and $0.265 \mathrm{~A} / \mathrm{m}$. The maximum energy flow is

1 $26.5 \mathrm{~W} / \mathrm{m}^{2}$
2 $36.5 \mathrm{~W} / \mathrm{m}^{2}$
3 $46.7 \mathrm{~W} / \mathrm{m}^{2}$
4 $765 \mathrm{~W} / \mathrm{m}^{2}$
Electromagnetic Wave

155550 In a plane electromagnetic wave, the electric field of amplitude $1 \mathrm{Vm}^{-1}$ varies with time in free space. The average energy density of magnetic field is (in $\mathbf{J m}^{-3}$ )

1 $8.86 \times 10^{-12}$
2 $4.43 \times 10^{-12}$
3 $17.72 \times 10^{-12}$
4 $2.21 \times 10^{-12}$
5 $1.11 \times 10^{-12}$
Electromagnetic Wave

155539 If ' $c$ ' is the speed of electromagnetic waves in vacuum, then their speed in a medium of dielectric constant ' $K$ ' and relative permittivity ' $\mu_{\mathrm{r}}$ ' is

1 $\frac{1}{\sqrt{\mu_{\mathrm{r}} \mathrm{K}}}$
2 $c \sqrt{\mu_{\mathrm{r}} \mathrm{K}}$
3 $\frac{c}{\sqrt{\mu_{r} \mathrm{~K}}}$
4 $\frac{\mathrm{K}}{\sqrt{\mu_{\mathrm{r}} \mathrm{c}}}$
Electromagnetic Wave

155541 The electric field portion of an electromagnetic wave is given by (all variables in SI units ) $E=10^{-4} \sin \left(6 \times 10^{5} t-0.01 x\right)$. The frequency (f) and the speed $(v)$ of electromagnetic wave are

1 $\mathrm{f}=30 / \pi \mathrm{kHz}$ and $\mathrm{v}=1.5 \times 10^{7} \mathrm{~m} / \mathrm{s}$
2 $\mathrm{f}=90 / \pi \mathrm{kHz}$ and $\mathrm{v}=6.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$
3 $\mathrm{f}=300 / \pi \mathrm{kHz}$ and $\mathrm{v}=6.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$
4 $\mathrm{f}=600 / \pi \mathrm{kHz}$ and $\mathrm{v}=7.5 \times 10^{7} \mathrm{~m} / \mathrm{s}$
5 $\mathrm{f}=900 / \pi \mathrm{kHz}$ and $\mathrm{v}=8.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$
Electromagnetic Wave

155543 In an electromagnetic wave, the electric and magnetic fields are $100 \mathrm{~V} / \mathrm{m}$ and $0.265 \mathrm{~A} / \mathrm{m}$. The maximum energy flow is

1 $26.5 \mathrm{~W} / \mathrm{m}^{2}$
2 $36.5 \mathrm{~W} / \mathrm{m}^{2}$
3 $46.7 \mathrm{~W} / \mathrm{m}^{2}$
4 $765 \mathrm{~W} / \mathrm{m}^{2}$
Electromagnetic Wave

155550 In a plane electromagnetic wave, the electric field of amplitude $1 \mathrm{Vm}^{-1}$ varies with time in free space. The average energy density of magnetic field is (in $\mathbf{J m}^{-3}$ )

1 $8.86 \times 10^{-12}$
2 $4.43 \times 10^{-12}$
3 $17.72 \times 10^{-12}$
4 $2.21 \times 10^{-12}$
5 $1.11 \times 10^{-12}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Electromagnetic Wave

155539 If ' $c$ ' is the speed of electromagnetic waves in vacuum, then their speed in a medium of dielectric constant ' $K$ ' and relative permittivity ' $\mu_{\mathrm{r}}$ ' is

1 $\frac{1}{\sqrt{\mu_{\mathrm{r}} \mathrm{K}}}$
2 $c \sqrt{\mu_{\mathrm{r}} \mathrm{K}}$
3 $\frac{c}{\sqrt{\mu_{r} \mathrm{~K}}}$
4 $\frac{\mathrm{K}}{\sqrt{\mu_{\mathrm{r}} \mathrm{c}}}$
Electromagnetic Wave

155541 The electric field portion of an electromagnetic wave is given by (all variables in SI units ) $E=10^{-4} \sin \left(6 \times 10^{5} t-0.01 x\right)$. The frequency (f) and the speed $(v)$ of electromagnetic wave are

1 $\mathrm{f}=30 / \pi \mathrm{kHz}$ and $\mathrm{v}=1.5 \times 10^{7} \mathrm{~m} / \mathrm{s}$
2 $\mathrm{f}=90 / \pi \mathrm{kHz}$ and $\mathrm{v}=6.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$
3 $\mathrm{f}=300 / \pi \mathrm{kHz}$ and $\mathrm{v}=6.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$
4 $\mathrm{f}=600 / \pi \mathrm{kHz}$ and $\mathrm{v}=7.5 \times 10^{7} \mathrm{~m} / \mathrm{s}$
5 $\mathrm{f}=900 / \pi \mathrm{kHz}$ and $\mathrm{v}=8.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$
Electromagnetic Wave

155543 In an electromagnetic wave, the electric and magnetic fields are $100 \mathrm{~V} / \mathrm{m}$ and $0.265 \mathrm{~A} / \mathrm{m}$. The maximum energy flow is

1 $26.5 \mathrm{~W} / \mathrm{m}^{2}$
2 $36.5 \mathrm{~W} / \mathrm{m}^{2}$
3 $46.7 \mathrm{~W} / \mathrm{m}^{2}$
4 $765 \mathrm{~W} / \mathrm{m}^{2}$
Electromagnetic Wave

155550 In a plane electromagnetic wave, the electric field of amplitude $1 \mathrm{Vm}^{-1}$ varies with time in free space. The average energy density of magnetic field is (in $\mathbf{J m}^{-3}$ )

1 $8.86 \times 10^{-12}$
2 $4.43 \times 10^{-12}$
3 $17.72 \times 10^{-12}$
4 $2.21 \times 10^{-12}$
5 $1.11 \times 10^{-12}$