DisplacementCurrent
Electromagnetic Wave

155552 If the magnetic field of an electromagnetic wave given as $B_{y}=2 \times 10^{-7} \sin \left(10^{3} x+1.5 \times\right.$ $10^{12}$ t) tesla, the wavelength of the electromagnetic wave is

1 $0.314 \mathrm{~mm}$
2 $0.628 \mathrm{~mm}$
3 $6.28 \mathrm{~mm}$
4 $1.26 \mathrm{~mm}$
5 $0.0628 \mathrm{~mm}$
Electromagnetic Wave

155555 The electric field of an electromagnetic wave travelling through vacuum is given by the equation $E=E_{0} \sin (k x-\omega t)$. The quantity that is independent of wavelength is

1 $\frac{\mathrm{k}}{\omega}$
2 $\mathrm{k \omega}$
3 $\omega$
4 $\mathrm{k}$
5 $\mathrm{k}^{2} \omega$
Electromagnetic Wave

155556 Electromagnetic waves of frequencies higher than $9 \sqrt{2} \mathrm{MHz}$ are found to be reflected by the ionosphere on a particular day at a place. The maximum electron density in the ionosphere is

1 $\sqrt{5} \times 10^{12} \mathrm{~m}^{-3}$
2 $\sqrt{2} \times 10^{12} \mathrm{~m}^{-3}$
3 $2 \times 10^{12} \mathrm{~m}^{-3}$
4 $5 \times 10^{12} \mathrm{~m}^{-3}$
5 $3 \times 10^{12} \mathrm{~m}^{-3}$
Electromagnetic Wave

155557 The refractive index and the permeability of a medium are respectively 1.5 and $5 \times 10^{-7}$
$\mathrm{Hm}^{-1}$. The relative permittivity of the medium is nearly

1 25
2 15
3 81
4 10
5 6
Electromagnetic Wave

155552 If the magnetic field of an electromagnetic wave given as $B_{y}=2 \times 10^{-7} \sin \left(10^{3} x+1.5 \times\right.$ $10^{12}$ t) tesla, the wavelength of the electromagnetic wave is

1 $0.314 \mathrm{~mm}$
2 $0.628 \mathrm{~mm}$
3 $6.28 \mathrm{~mm}$
4 $1.26 \mathrm{~mm}$
5 $0.0628 \mathrm{~mm}$
Electromagnetic Wave

155555 The electric field of an electromagnetic wave travelling through vacuum is given by the equation $E=E_{0} \sin (k x-\omega t)$. The quantity that is independent of wavelength is

1 $\frac{\mathrm{k}}{\omega}$
2 $\mathrm{k \omega}$
3 $\omega$
4 $\mathrm{k}$
5 $\mathrm{k}^{2} \omega$
Electromagnetic Wave

155556 Electromagnetic waves of frequencies higher than $9 \sqrt{2} \mathrm{MHz}$ are found to be reflected by the ionosphere on a particular day at a place. The maximum electron density in the ionosphere is

1 $\sqrt{5} \times 10^{12} \mathrm{~m}^{-3}$
2 $\sqrt{2} \times 10^{12} \mathrm{~m}^{-3}$
3 $2 \times 10^{12} \mathrm{~m}^{-3}$
4 $5 \times 10^{12} \mathrm{~m}^{-3}$
5 $3 \times 10^{12} \mathrm{~m}^{-3}$
Electromagnetic Wave

155557 The refractive index and the permeability of a medium are respectively 1.5 and $5 \times 10^{-7}$
$\mathrm{Hm}^{-1}$. The relative permittivity of the medium is nearly

1 25
2 15
3 81
4 10
5 6
Electromagnetic Wave

155552 If the magnetic field of an electromagnetic wave given as $B_{y}=2 \times 10^{-7} \sin \left(10^{3} x+1.5 \times\right.$ $10^{12}$ t) tesla, the wavelength of the electromagnetic wave is

1 $0.314 \mathrm{~mm}$
2 $0.628 \mathrm{~mm}$
3 $6.28 \mathrm{~mm}$
4 $1.26 \mathrm{~mm}$
5 $0.0628 \mathrm{~mm}$
Electromagnetic Wave

155555 The electric field of an electromagnetic wave travelling through vacuum is given by the equation $E=E_{0} \sin (k x-\omega t)$. The quantity that is independent of wavelength is

1 $\frac{\mathrm{k}}{\omega}$
2 $\mathrm{k \omega}$
3 $\omega$
4 $\mathrm{k}$
5 $\mathrm{k}^{2} \omega$
Electromagnetic Wave

155556 Electromagnetic waves of frequencies higher than $9 \sqrt{2} \mathrm{MHz}$ are found to be reflected by the ionosphere on a particular day at a place. The maximum electron density in the ionosphere is

1 $\sqrt{5} \times 10^{12} \mathrm{~m}^{-3}$
2 $\sqrt{2} \times 10^{12} \mathrm{~m}^{-3}$
3 $2 \times 10^{12} \mathrm{~m}^{-3}$
4 $5 \times 10^{12} \mathrm{~m}^{-3}$
5 $3 \times 10^{12} \mathrm{~m}^{-3}$
Electromagnetic Wave

155557 The refractive index and the permeability of a medium are respectively 1.5 and $5 \times 10^{-7}$
$\mathrm{Hm}^{-1}$. The relative permittivity of the medium is nearly

1 25
2 15
3 81
4 10
5 6
Electromagnetic Wave

155552 If the magnetic field of an electromagnetic wave given as $B_{y}=2 \times 10^{-7} \sin \left(10^{3} x+1.5 \times\right.$ $10^{12}$ t) tesla, the wavelength of the electromagnetic wave is

1 $0.314 \mathrm{~mm}$
2 $0.628 \mathrm{~mm}$
3 $6.28 \mathrm{~mm}$
4 $1.26 \mathrm{~mm}$
5 $0.0628 \mathrm{~mm}$
Electromagnetic Wave

155555 The electric field of an electromagnetic wave travelling through vacuum is given by the equation $E=E_{0} \sin (k x-\omega t)$. The quantity that is independent of wavelength is

1 $\frac{\mathrm{k}}{\omega}$
2 $\mathrm{k \omega}$
3 $\omega$
4 $\mathrm{k}$
5 $\mathrm{k}^{2} \omega$
Electromagnetic Wave

155556 Electromagnetic waves of frequencies higher than $9 \sqrt{2} \mathrm{MHz}$ are found to be reflected by the ionosphere on a particular day at a place. The maximum electron density in the ionosphere is

1 $\sqrt{5} \times 10^{12} \mathrm{~m}^{-3}$
2 $\sqrt{2} \times 10^{12} \mathrm{~m}^{-3}$
3 $2 \times 10^{12} \mathrm{~m}^{-3}$
4 $5 \times 10^{12} \mathrm{~m}^{-3}$
5 $3 \times 10^{12} \mathrm{~m}^{-3}$
Electromagnetic Wave

155557 The refractive index and the permeability of a medium are respectively 1.5 and $5 \times 10^{-7}$
$\mathrm{Hm}^{-1}$. The relative permittivity of the medium is nearly

1 25
2 15
3 81
4 10
5 6