DisplacementCurrent
Electromagnetic Wave

155513 What is the amplitude of the electric field in a parallel beam of light intensity $\left(\frac{15}{\pi}\right) \frac{\mathrm{W}}{\mathrm{m}^{2}}$ ?
$\left[\text { Assume, } \frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}\right]$

1 $60 \mathrm{~N} / \mathrm{C}$
2 $50 \mathrm{~N} / \mathrm{C}$
3 $40 \mathrm{~N} / \mathrm{C}$
4 $30 \mathrm{~N} / \mathrm{C}$
Electromagnetic Wave

155514 At an instant, a plane electromagnetic wave has its magnetic field in the direction of the vector $\hat{\mathbf{i}}-\hat{\mathbf{j}}$ and its electric field is in the direction of $\hat{\mathbf{i}}+\hat{\mathbf{j}}$. The wave is travelling along which direction?

1 $+x$-direction
2 - x-direction
3 + z-direction
4 - z-direction
Electromagnetic Wave

155515 An electromagnetic wave of frequency $3.0 \mathrm{MHz}$ passes from vacuum into a non-magnetic medium with permittivity, $\varepsilon=16 \varepsilon_{0}$. Where, $\epsilon_{0}$ is the free space permittivity. The change in wavelength is

1 $-75 \mathrm{~m}$
2 $+75 \mathrm{~m}$
3 $-50 \mathrm{~m}$
4 $+50 \mathrm{~m}$
Electromagnetic Wave

155516 The electric field of an electromagnetic wave in free space is given by $\vec{E}=5 \sin \left(\frac{2 \pi}{3} z-\omega t\right) \hat{y} V / m$. which of the
following statements is correct?

1 The wave propagates along $\hat{y}$
2 The wave vector is given $\overrightarrow{\mathrm{K}}=\frac{2 \pi}{3} \hat{\mathrm{Z}}$
3 The wavelength of the electromagnetic wave is $\frac{1}{3} \mathrm{~m}$
4 The corresponding magnetic field is $\overrightarrow{\mathrm{B}}=\frac{5}{\mathrm{c}} \cos \left(\frac{2 \pi}{3} \mathrm{z}-\omega \mathrm{t}\right) \hat{\mathrm{x} T}$
5 The frequency of the wave is approximately $10^{6} \mathrm{~Hz}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Electromagnetic Wave

155513 What is the amplitude of the electric field in a parallel beam of light intensity $\left(\frac{15}{\pi}\right) \frac{\mathrm{W}}{\mathrm{m}^{2}}$ ?
$\left[\text { Assume, } \frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}\right]$

1 $60 \mathrm{~N} / \mathrm{C}$
2 $50 \mathrm{~N} / \mathrm{C}$
3 $40 \mathrm{~N} / \mathrm{C}$
4 $30 \mathrm{~N} / \mathrm{C}$
Electromagnetic Wave

155514 At an instant, a plane electromagnetic wave has its magnetic field in the direction of the vector $\hat{\mathbf{i}}-\hat{\mathbf{j}}$ and its electric field is in the direction of $\hat{\mathbf{i}}+\hat{\mathbf{j}}$. The wave is travelling along which direction?

1 $+x$-direction
2 - x-direction
3 + z-direction
4 - z-direction
Electromagnetic Wave

155515 An electromagnetic wave of frequency $3.0 \mathrm{MHz}$ passes from vacuum into a non-magnetic medium with permittivity, $\varepsilon=16 \varepsilon_{0}$. Where, $\epsilon_{0}$ is the free space permittivity. The change in wavelength is

1 $-75 \mathrm{~m}$
2 $+75 \mathrm{~m}$
3 $-50 \mathrm{~m}$
4 $+50 \mathrm{~m}$
Electromagnetic Wave

155516 The electric field of an electromagnetic wave in free space is given by $\vec{E}=5 \sin \left(\frac{2 \pi}{3} z-\omega t\right) \hat{y} V / m$. which of the
following statements is correct?

1 The wave propagates along $\hat{y}$
2 The wave vector is given $\overrightarrow{\mathrm{K}}=\frac{2 \pi}{3} \hat{\mathrm{Z}}$
3 The wavelength of the electromagnetic wave is $\frac{1}{3} \mathrm{~m}$
4 The corresponding magnetic field is $\overrightarrow{\mathrm{B}}=\frac{5}{\mathrm{c}} \cos \left(\frac{2 \pi}{3} \mathrm{z}-\omega \mathrm{t}\right) \hat{\mathrm{x} T}$
5 The frequency of the wave is approximately $10^{6} \mathrm{~Hz}$
Electromagnetic Wave

155513 What is the amplitude of the electric field in a parallel beam of light intensity $\left(\frac{15}{\pi}\right) \frac{\mathrm{W}}{\mathrm{m}^{2}}$ ?
$\left[\text { Assume, } \frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}\right]$

1 $60 \mathrm{~N} / \mathrm{C}$
2 $50 \mathrm{~N} / \mathrm{C}$
3 $40 \mathrm{~N} / \mathrm{C}$
4 $30 \mathrm{~N} / \mathrm{C}$
Electromagnetic Wave

155514 At an instant, a plane electromagnetic wave has its magnetic field in the direction of the vector $\hat{\mathbf{i}}-\hat{\mathbf{j}}$ and its electric field is in the direction of $\hat{\mathbf{i}}+\hat{\mathbf{j}}$. The wave is travelling along which direction?

1 $+x$-direction
2 - x-direction
3 + z-direction
4 - z-direction
Electromagnetic Wave

155515 An electromagnetic wave of frequency $3.0 \mathrm{MHz}$ passes from vacuum into a non-magnetic medium with permittivity, $\varepsilon=16 \varepsilon_{0}$. Where, $\epsilon_{0}$ is the free space permittivity. The change in wavelength is

1 $-75 \mathrm{~m}$
2 $+75 \mathrm{~m}$
3 $-50 \mathrm{~m}$
4 $+50 \mathrm{~m}$
Electromagnetic Wave

155516 The electric field of an electromagnetic wave in free space is given by $\vec{E}=5 \sin \left(\frac{2 \pi}{3} z-\omega t\right) \hat{y} V / m$. which of the
following statements is correct?

1 The wave propagates along $\hat{y}$
2 The wave vector is given $\overrightarrow{\mathrm{K}}=\frac{2 \pi}{3} \hat{\mathrm{Z}}$
3 The wavelength of the electromagnetic wave is $\frac{1}{3} \mathrm{~m}$
4 The corresponding magnetic field is $\overrightarrow{\mathrm{B}}=\frac{5}{\mathrm{c}} \cos \left(\frac{2 \pi}{3} \mathrm{z}-\omega \mathrm{t}\right) \hat{\mathrm{x} T}$
5 The frequency of the wave is approximately $10^{6} \mathrm{~Hz}$
Electromagnetic Wave

155513 What is the amplitude of the electric field in a parallel beam of light intensity $\left(\frac{15}{\pi}\right) \frac{\mathrm{W}}{\mathrm{m}^{2}}$ ?
$\left[\text { Assume, } \frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}\right]$

1 $60 \mathrm{~N} / \mathrm{C}$
2 $50 \mathrm{~N} / \mathrm{C}$
3 $40 \mathrm{~N} / \mathrm{C}$
4 $30 \mathrm{~N} / \mathrm{C}$
Electromagnetic Wave

155514 At an instant, a plane electromagnetic wave has its magnetic field in the direction of the vector $\hat{\mathbf{i}}-\hat{\mathbf{j}}$ and its electric field is in the direction of $\hat{\mathbf{i}}+\hat{\mathbf{j}}$. The wave is travelling along which direction?

1 $+x$-direction
2 - x-direction
3 + z-direction
4 - z-direction
Electromagnetic Wave

155515 An electromagnetic wave of frequency $3.0 \mathrm{MHz}$ passes from vacuum into a non-magnetic medium with permittivity, $\varepsilon=16 \varepsilon_{0}$. Where, $\epsilon_{0}$ is the free space permittivity. The change in wavelength is

1 $-75 \mathrm{~m}$
2 $+75 \mathrm{~m}$
3 $-50 \mathrm{~m}$
4 $+50 \mathrm{~m}$
Electromagnetic Wave

155516 The electric field of an electromagnetic wave in free space is given by $\vec{E}=5 \sin \left(\frac{2 \pi}{3} z-\omega t\right) \hat{y} V / m$. which of the
following statements is correct?

1 The wave propagates along $\hat{y}$
2 The wave vector is given $\overrightarrow{\mathrm{K}}=\frac{2 \pi}{3} \hat{\mathrm{Z}}$
3 The wavelength of the electromagnetic wave is $\frac{1}{3} \mathrm{~m}$
4 The corresponding magnetic field is $\overrightarrow{\mathrm{B}}=\frac{5}{\mathrm{c}} \cos \left(\frac{2 \pi}{3} \mathrm{z}-\omega \mathrm{t}\right) \hat{\mathrm{x} T}$
5 The frequency of the wave is approximately $10^{6} \mathrm{~Hz}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here