DisplacementCurrent
Electromagnetic Wave

155518 An ionized gas is subjected to an electric field along positive $X$-axis and a magnetic field along positive Z-axis simultaneously. Then

1 Positive ions deflect towards positive Y-axis negative ions towards negative $Y$-axis
2 All ions deflect towards positive $\mathrm{Y}$-axis
3 All ions deflect towards negative $Y$-axis
4 Positive ions deflect towards negative Y-axis and negative ions towards positive $\mathrm{Y}$-axis
Electromagnetic Wave

155519 An electromagnetic wave is travelling in $x-$ direction with electric field vector given by, $E_{y}$ $=E_{0} \sin (k x-\omega t) \hat{j}$. The correct expression for magnetic field vector is :

1 $\mathrm{B}_{\mathrm{y}}=\mathrm{E}_{0} \mathrm{C} \sin (\mathrm{kx}-\omega \mathrm{t}) \hat{\mathrm{j}}$
2 $\mathrm{B}_{\mathrm{z}}=\mathrm{E}_{0} \mathrm{C} \sin (\mathrm{kx}-\omega \mathrm{t}) \hat{\mathrm{k}}$
3 $B_{y}=\frac{E_{0}}{C} \sin (k x-\omega t) \hat{j}$
4 $\mathrm{B}_{\mathrm{z}}=\frac{\mathrm{E}_{0}}{\mathrm{C}} \sin (\mathrm{kx}-\omega \mathrm{t}) \hat{\mathrm{k}}$
Electromagnetic Wave

155522 The current density of a solid cylindrical wire of radius $R$, as a function of radial distance $r$ is given by $J(r)=J_{0}\left(1-\frac{r}{R}\right)$. The total current in the radial region $r=0$ to $r=\frac{R}{4}$ will be:

1 $\frac{5 \mathrm{~J}_{0} \pi \mathrm{R}^{2}}{32}$
2 $\frac{5 \mathrm{~J}_{0} \pi \mathrm{R}^{2}}{96}$
3 $\frac{3 J_{0} \pi R^{2}}{64}$
4 $\frac{\mathrm{J}_{0} \pi \mathrm{R}^{2}}{128}$
Electromagnetic Wave

155523 The electric field component of an electromagnetic waves in vacuum is given as $E=\{(3.1 \mathrm{~N} / \mathrm{C})$ $\left.\left[\cos (1.8 \mathrm{rad} / \mathrm{m}) \mathbf{y}+\left(5.4 \times 10^{8} \mathrm{rad} / \mathrm{s}\right) \mathrm{t}\right]\right\} \hat{\mathrm{i}}$ Its direction of propagation and wavelength is

1 $\hat{\mathrm{i}}, 1.8 \mathrm{~m}$
2 $-\hat{i}, 1.8 \mathrm{~m}$
3 $\hat{j}, 3.5 \mathrm{~m}$
4 $-\hat{\mathrm{j}}, 3.5 \mathrm{~m}$
Electromagnetic Wave

155524 An electromagnetic wave of frequency $45 \mathrm{MHz}$ travels in free space along $X$-axis. At some point and at some instant, the electric field has a maximum value of $750 \mathrm{NC}^{-1}$ along $\mathrm{Y}$-axis. The magnetic field at this position and time is

1 $2.5 \times 10^{-6} \hat{j}$
2 $5 \times 10^{-6} \hat{k} T$
3 $2.5 \times 10^{-6} \hat{k} T$
4 $2.5 \times 10^{-6} \hat{i} \mathrm{~T}$
Electromagnetic Wave

155518 An ionized gas is subjected to an electric field along positive $X$-axis and a magnetic field along positive Z-axis simultaneously. Then

1 Positive ions deflect towards positive Y-axis negative ions towards negative $Y$-axis
2 All ions deflect towards positive $\mathrm{Y}$-axis
3 All ions deflect towards negative $Y$-axis
4 Positive ions deflect towards negative Y-axis and negative ions towards positive $\mathrm{Y}$-axis
Electromagnetic Wave

155519 An electromagnetic wave is travelling in $x-$ direction with electric field vector given by, $E_{y}$ $=E_{0} \sin (k x-\omega t) \hat{j}$. The correct expression for magnetic field vector is :

1 $\mathrm{B}_{\mathrm{y}}=\mathrm{E}_{0} \mathrm{C} \sin (\mathrm{kx}-\omega \mathrm{t}) \hat{\mathrm{j}}$
2 $\mathrm{B}_{\mathrm{z}}=\mathrm{E}_{0} \mathrm{C} \sin (\mathrm{kx}-\omega \mathrm{t}) \hat{\mathrm{k}}$
3 $B_{y}=\frac{E_{0}}{C} \sin (k x-\omega t) \hat{j}$
4 $\mathrm{B}_{\mathrm{z}}=\frac{\mathrm{E}_{0}}{\mathrm{C}} \sin (\mathrm{kx}-\omega \mathrm{t}) \hat{\mathrm{k}}$
Electromagnetic Wave

155522 The current density of a solid cylindrical wire of radius $R$, as a function of radial distance $r$ is given by $J(r)=J_{0}\left(1-\frac{r}{R}\right)$. The total current in the radial region $r=0$ to $r=\frac{R}{4}$ will be:

1 $\frac{5 \mathrm{~J}_{0} \pi \mathrm{R}^{2}}{32}$
2 $\frac{5 \mathrm{~J}_{0} \pi \mathrm{R}^{2}}{96}$
3 $\frac{3 J_{0} \pi R^{2}}{64}$
4 $\frac{\mathrm{J}_{0} \pi \mathrm{R}^{2}}{128}$
Electromagnetic Wave

155523 The electric field component of an electromagnetic waves in vacuum is given as $E=\{(3.1 \mathrm{~N} / \mathrm{C})$ $\left.\left[\cos (1.8 \mathrm{rad} / \mathrm{m}) \mathbf{y}+\left(5.4 \times 10^{8} \mathrm{rad} / \mathrm{s}\right) \mathrm{t}\right]\right\} \hat{\mathrm{i}}$ Its direction of propagation and wavelength is

1 $\hat{\mathrm{i}}, 1.8 \mathrm{~m}$
2 $-\hat{i}, 1.8 \mathrm{~m}$
3 $\hat{j}, 3.5 \mathrm{~m}$
4 $-\hat{\mathrm{j}}, 3.5 \mathrm{~m}$
Electromagnetic Wave

155524 An electromagnetic wave of frequency $45 \mathrm{MHz}$ travels in free space along $X$-axis. At some point and at some instant, the electric field has a maximum value of $750 \mathrm{NC}^{-1}$ along $\mathrm{Y}$-axis. The magnetic field at this position and time is

1 $2.5 \times 10^{-6} \hat{j}$
2 $5 \times 10^{-6} \hat{k} T$
3 $2.5 \times 10^{-6} \hat{k} T$
4 $2.5 \times 10^{-6} \hat{i} \mathrm{~T}$
Electromagnetic Wave

155518 An ionized gas is subjected to an electric field along positive $X$-axis and a magnetic field along positive Z-axis simultaneously. Then

1 Positive ions deflect towards positive Y-axis negative ions towards negative $Y$-axis
2 All ions deflect towards positive $\mathrm{Y}$-axis
3 All ions deflect towards negative $Y$-axis
4 Positive ions deflect towards negative Y-axis and negative ions towards positive $\mathrm{Y}$-axis
Electromagnetic Wave

155519 An electromagnetic wave is travelling in $x-$ direction with electric field vector given by, $E_{y}$ $=E_{0} \sin (k x-\omega t) \hat{j}$. The correct expression for magnetic field vector is :

1 $\mathrm{B}_{\mathrm{y}}=\mathrm{E}_{0} \mathrm{C} \sin (\mathrm{kx}-\omega \mathrm{t}) \hat{\mathrm{j}}$
2 $\mathrm{B}_{\mathrm{z}}=\mathrm{E}_{0} \mathrm{C} \sin (\mathrm{kx}-\omega \mathrm{t}) \hat{\mathrm{k}}$
3 $B_{y}=\frac{E_{0}}{C} \sin (k x-\omega t) \hat{j}$
4 $\mathrm{B}_{\mathrm{z}}=\frac{\mathrm{E}_{0}}{\mathrm{C}} \sin (\mathrm{kx}-\omega \mathrm{t}) \hat{\mathrm{k}}$
Electromagnetic Wave

155522 The current density of a solid cylindrical wire of radius $R$, as a function of radial distance $r$ is given by $J(r)=J_{0}\left(1-\frac{r}{R}\right)$. The total current in the radial region $r=0$ to $r=\frac{R}{4}$ will be:

1 $\frac{5 \mathrm{~J}_{0} \pi \mathrm{R}^{2}}{32}$
2 $\frac{5 \mathrm{~J}_{0} \pi \mathrm{R}^{2}}{96}$
3 $\frac{3 J_{0} \pi R^{2}}{64}$
4 $\frac{\mathrm{J}_{0} \pi \mathrm{R}^{2}}{128}$
Electromagnetic Wave

155523 The electric field component of an electromagnetic waves in vacuum is given as $E=\{(3.1 \mathrm{~N} / \mathrm{C})$ $\left.\left[\cos (1.8 \mathrm{rad} / \mathrm{m}) \mathbf{y}+\left(5.4 \times 10^{8} \mathrm{rad} / \mathrm{s}\right) \mathrm{t}\right]\right\} \hat{\mathrm{i}}$ Its direction of propagation and wavelength is

1 $\hat{\mathrm{i}}, 1.8 \mathrm{~m}$
2 $-\hat{i}, 1.8 \mathrm{~m}$
3 $\hat{j}, 3.5 \mathrm{~m}$
4 $-\hat{\mathrm{j}}, 3.5 \mathrm{~m}$
Electromagnetic Wave

155524 An electromagnetic wave of frequency $45 \mathrm{MHz}$ travels in free space along $X$-axis. At some point and at some instant, the electric field has a maximum value of $750 \mathrm{NC}^{-1}$ along $\mathrm{Y}$-axis. The magnetic field at this position and time is

1 $2.5 \times 10^{-6} \hat{j}$
2 $5 \times 10^{-6} \hat{k} T$
3 $2.5 \times 10^{-6} \hat{k} T$
4 $2.5 \times 10^{-6} \hat{i} \mathrm{~T}$
Electromagnetic Wave

155518 An ionized gas is subjected to an electric field along positive $X$-axis and a magnetic field along positive Z-axis simultaneously. Then

1 Positive ions deflect towards positive Y-axis negative ions towards negative $Y$-axis
2 All ions deflect towards positive $\mathrm{Y}$-axis
3 All ions deflect towards negative $Y$-axis
4 Positive ions deflect towards negative Y-axis and negative ions towards positive $\mathrm{Y}$-axis
Electromagnetic Wave

155519 An electromagnetic wave is travelling in $x-$ direction with electric field vector given by, $E_{y}$ $=E_{0} \sin (k x-\omega t) \hat{j}$. The correct expression for magnetic field vector is :

1 $\mathrm{B}_{\mathrm{y}}=\mathrm{E}_{0} \mathrm{C} \sin (\mathrm{kx}-\omega \mathrm{t}) \hat{\mathrm{j}}$
2 $\mathrm{B}_{\mathrm{z}}=\mathrm{E}_{0} \mathrm{C} \sin (\mathrm{kx}-\omega \mathrm{t}) \hat{\mathrm{k}}$
3 $B_{y}=\frac{E_{0}}{C} \sin (k x-\omega t) \hat{j}$
4 $\mathrm{B}_{\mathrm{z}}=\frac{\mathrm{E}_{0}}{\mathrm{C}} \sin (\mathrm{kx}-\omega \mathrm{t}) \hat{\mathrm{k}}$
Electromagnetic Wave

155522 The current density of a solid cylindrical wire of radius $R$, as a function of radial distance $r$ is given by $J(r)=J_{0}\left(1-\frac{r}{R}\right)$. The total current in the radial region $r=0$ to $r=\frac{R}{4}$ will be:

1 $\frac{5 \mathrm{~J}_{0} \pi \mathrm{R}^{2}}{32}$
2 $\frac{5 \mathrm{~J}_{0} \pi \mathrm{R}^{2}}{96}$
3 $\frac{3 J_{0} \pi R^{2}}{64}$
4 $\frac{\mathrm{J}_{0} \pi \mathrm{R}^{2}}{128}$
Electromagnetic Wave

155523 The electric field component of an electromagnetic waves in vacuum is given as $E=\{(3.1 \mathrm{~N} / \mathrm{C})$ $\left.\left[\cos (1.8 \mathrm{rad} / \mathrm{m}) \mathbf{y}+\left(5.4 \times 10^{8} \mathrm{rad} / \mathrm{s}\right) \mathrm{t}\right]\right\} \hat{\mathrm{i}}$ Its direction of propagation and wavelength is

1 $\hat{\mathrm{i}}, 1.8 \mathrm{~m}$
2 $-\hat{i}, 1.8 \mathrm{~m}$
3 $\hat{j}, 3.5 \mathrm{~m}$
4 $-\hat{\mathrm{j}}, 3.5 \mathrm{~m}$
Electromagnetic Wave

155524 An electromagnetic wave of frequency $45 \mathrm{MHz}$ travels in free space along $X$-axis. At some point and at some instant, the electric field has a maximum value of $750 \mathrm{NC}^{-1}$ along $\mathrm{Y}$-axis. The magnetic field at this position and time is

1 $2.5 \times 10^{-6} \hat{j}$
2 $5 \times 10^{-6} \hat{k} T$
3 $2.5 \times 10^{-6} \hat{k} T$
4 $2.5 \times 10^{-6} \hat{i} \mathrm{~T}$
Electromagnetic Wave

155518 An ionized gas is subjected to an electric field along positive $X$-axis and a magnetic field along positive Z-axis simultaneously. Then

1 Positive ions deflect towards positive Y-axis negative ions towards negative $Y$-axis
2 All ions deflect towards positive $\mathrm{Y}$-axis
3 All ions deflect towards negative $Y$-axis
4 Positive ions deflect towards negative Y-axis and negative ions towards positive $\mathrm{Y}$-axis
Electromagnetic Wave

155519 An electromagnetic wave is travelling in $x-$ direction with electric field vector given by, $E_{y}$ $=E_{0} \sin (k x-\omega t) \hat{j}$. The correct expression for magnetic field vector is :

1 $\mathrm{B}_{\mathrm{y}}=\mathrm{E}_{0} \mathrm{C} \sin (\mathrm{kx}-\omega \mathrm{t}) \hat{\mathrm{j}}$
2 $\mathrm{B}_{\mathrm{z}}=\mathrm{E}_{0} \mathrm{C} \sin (\mathrm{kx}-\omega \mathrm{t}) \hat{\mathrm{k}}$
3 $B_{y}=\frac{E_{0}}{C} \sin (k x-\omega t) \hat{j}$
4 $\mathrm{B}_{\mathrm{z}}=\frac{\mathrm{E}_{0}}{\mathrm{C}} \sin (\mathrm{kx}-\omega \mathrm{t}) \hat{\mathrm{k}}$
Electromagnetic Wave

155522 The current density of a solid cylindrical wire of radius $R$, as a function of radial distance $r$ is given by $J(r)=J_{0}\left(1-\frac{r}{R}\right)$. The total current in the radial region $r=0$ to $r=\frac{R}{4}$ will be:

1 $\frac{5 \mathrm{~J}_{0} \pi \mathrm{R}^{2}}{32}$
2 $\frac{5 \mathrm{~J}_{0} \pi \mathrm{R}^{2}}{96}$
3 $\frac{3 J_{0} \pi R^{2}}{64}$
4 $\frac{\mathrm{J}_{0} \pi \mathrm{R}^{2}}{128}$
Electromagnetic Wave

155523 The electric field component of an electromagnetic waves in vacuum is given as $E=\{(3.1 \mathrm{~N} / \mathrm{C})$ $\left.\left[\cos (1.8 \mathrm{rad} / \mathrm{m}) \mathbf{y}+\left(5.4 \times 10^{8} \mathrm{rad} / \mathrm{s}\right) \mathrm{t}\right]\right\} \hat{\mathrm{i}}$ Its direction of propagation and wavelength is

1 $\hat{\mathrm{i}}, 1.8 \mathrm{~m}$
2 $-\hat{i}, 1.8 \mathrm{~m}$
3 $\hat{j}, 3.5 \mathrm{~m}$
4 $-\hat{\mathrm{j}}, 3.5 \mathrm{~m}$
Electromagnetic Wave

155524 An electromagnetic wave of frequency $45 \mathrm{MHz}$ travels in free space along $X$-axis. At some point and at some instant, the electric field has a maximum value of $750 \mathrm{NC}^{-1}$ along $\mathrm{Y}$-axis. The magnetic field at this position and time is

1 $2.5 \times 10^{-6} \hat{j}$
2 $5 \times 10^{-6} \hat{k} T$
3 $2.5 \times 10^{-6} \hat{k} T$
4 $2.5 \times 10^{-6} \hat{i} \mathrm{~T}$