155523 The electric field component of an electromagnetic waves in vacuum is given as $E=\{(3.1 \mathrm{~N} / \mathrm{C})$ $\left.\left[\cos (1.8 \mathrm{rad} / \mathrm{m}) \mathbf{y}+\left(5.4 \times 10^{8} \mathrm{rad} / \mathrm{s}\right) \mathrm{t}\right]\right\} \hat{\mathrm{i}}$ Its direction of propagation and wavelength is
155523 The electric field component of an electromagnetic waves in vacuum is given as $E=\{(3.1 \mathrm{~N} / \mathrm{C})$ $\left.\left[\cos (1.8 \mathrm{rad} / \mathrm{m}) \mathbf{y}+\left(5.4 \times 10^{8} \mathrm{rad} / \mathrm{s}\right) \mathrm{t}\right]\right\} \hat{\mathrm{i}}$ Its direction of propagation and wavelength is
155523 The electric field component of an electromagnetic waves in vacuum is given as $E=\{(3.1 \mathrm{~N} / \mathrm{C})$ $\left.\left[\cos (1.8 \mathrm{rad} / \mathrm{m}) \mathbf{y}+\left(5.4 \times 10^{8} \mathrm{rad} / \mathrm{s}\right) \mathrm{t}\right]\right\} \hat{\mathrm{i}}$ Its direction of propagation and wavelength is
155523 The electric field component of an electromagnetic waves in vacuum is given as $E=\{(3.1 \mathrm{~N} / \mathrm{C})$ $\left.\left[\cos (1.8 \mathrm{rad} / \mathrm{m}) \mathbf{y}+\left(5.4 \times 10^{8} \mathrm{rad} / \mathrm{s}\right) \mathrm{t}\right]\right\} \hat{\mathrm{i}}$ Its direction of propagation and wavelength is
155523 The electric field component of an electromagnetic waves in vacuum is given as $E=\{(3.1 \mathrm{~N} / \mathrm{C})$ $\left.\left[\cos (1.8 \mathrm{rad} / \mathrm{m}) \mathbf{y}+\left(5.4 \times 10^{8} \mathrm{rad} / \mathrm{s}\right) \mathrm{t}\right]\right\} \hat{\mathrm{i}}$ Its direction of propagation and wavelength is