155498 For a plane electromagnetic wave, the electric field is given by $\overrightarrow{\mathbf{E}}=90 \sin \left(0.5 \times 10^{3} \mathrm{x}+1.5 \times\right.$ $\left.10^{11} \mathrm{t}\right) \hat{\mathbf{k}} \mathrm{V} / \mathrm{m}$. The corresponding magnetic field $\overrightarrow{\mathrm{B}}$ will be
155498 For a plane electromagnetic wave, the electric field is given by $\overrightarrow{\mathbf{E}}=90 \sin \left(0.5 \times 10^{3} \mathrm{x}+1.5 \times\right.$ $\left.10^{11} \mathrm{t}\right) \hat{\mathbf{k}} \mathrm{V} / \mathrm{m}$. The corresponding magnetic field $\overrightarrow{\mathrm{B}}$ will be
155498 For a plane electromagnetic wave, the electric field is given by $\overrightarrow{\mathbf{E}}=90 \sin \left(0.5 \times 10^{3} \mathrm{x}+1.5 \times\right.$ $\left.10^{11} \mathrm{t}\right) \hat{\mathbf{k}} \mathrm{V} / \mathrm{m}$. The corresponding magnetic field $\overrightarrow{\mathrm{B}}$ will be
155498 For a plane electromagnetic wave, the electric field is given by $\overrightarrow{\mathbf{E}}=90 \sin \left(0.5 \times 10^{3} \mathrm{x}+1.5 \times\right.$ $\left.10^{11} \mathrm{t}\right) \hat{\mathbf{k}} \mathrm{V} / \mathrm{m}$. The corresponding magnetic field $\overrightarrow{\mathrm{B}}$ will be