DisplacementCurrent
Electromagnetic Wave

155498 For a plane electromagnetic wave, the electric field is given by $\overrightarrow{\mathbf{E}}=90 \sin \left(0.5 \times 10^{3} \mathrm{x}+1.5 \times\right.$ $\left.10^{11} \mathrm{t}\right) \hat{\mathbf{k}} \mathrm{V} / \mathrm{m}$. The corresponding magnetic field $\overrightarrow{\mathrm{B}}$ will be

1 $\overrightarrow{\mathrm{B}}=3 \times 10^{-7} \sin \left(0.5 \times 10^{3} \mathrm{x}+1.5 \times 10^{11} \mathrm{t}\right) \hat{\mathrm{i}} \mathrm{T}$
2 $\vec{B}=3 \times 10^{-7} \sin \left(0.5 \times 10^{3} \mathrm{x}+1.5 \times 10^{11} \mathrm{t}\right) \hat{\mathrm{j} T}$
3 $\vec{B}=27 \times 10^{9} \sin \left(0.5 \times 10^{3} \mathrm{x}+1.5 \times 10^{11} \mathrm{t}\right) \hat{\mathrm{j} T}$
4 $\overrightarrow{\mathrm{B}}=3 \times 10^{-7} \sin \left(0.5 \times 10^{3} \mathrm{x}+1.5 \times 10^{11} \mathrm{t}\right) \hat{\mathrm{k}} \mathrm{T}$
Electromagnetic Wave

155500 A plane electromagnetic wave of frequency 25 $\mathrm{MHz}$ travels in free space along the $\mathrm{X}$ direction. At a particular point in space and time, where $\bar{B}=2.1 \times 10^{-8} \hat{k}$ T then find $\bar{E}$ at this point?

1 $-2.1 \hat{\mathrm{j}} \frac{\mathrm{V}}{\mathrm{m}}$
2 $6.3 \hat{j} \frac{\mathrm{V}}{\mathrm{m}}$
3 $4.2 \hat{\mathrm{j}} \frac{\mathrm{V}}{\mathrm{m}}$
4 $-3.2 \hat{\mathrm{j}} \frac{\mathrm{V}}{\mathrm{m}}$
Electromagnetic Wave

155501 If an electromagnetic wave of frequency $5 \mathrm{MHz}$ travels from vacuum into a dielectric medium of electrical permittivity $\varepsilon_{\mathrm{r}}=4$, then its (take $\mu_{\mathrm{r}}$ =1)

1 wavelength is halved and the frequency remains unchanged
2 wavelength and frequency are both doubled
3 wavelength and frequency both remain unchanged
4 wavelength is doubled but the frequency remains unchanged
5 wavelength remains unchanged but the frequency is doubled
Electromagnetic Wave

155502 A plane electromagnetic wave travel in free space along $x$-axis. At a particular point in space, the electric field along $y$-axis is $9.3 \mathrm{Vm}^{-1}$. The magnetic induction along $\mathrm{z}$-axis is

1 $3.10 \times 10^{-8} \mathrm{~T}$
2 $3.00 \times 10^{-5} \mathrm{~T}$
3 $3.00 \times 10^{-6} \mathrm{~T}$
4 $9.30 \times 10^{-6} \mathrm{~T}$
Electromagnetic Wave

155498 For a plane electromagnetic wave, the electric field is given by $\overrightarrow{\mathbf{E}}=90 \sin \left(0.5 \times 10^{3} \mathrm{x}+1.5 \times\right.$ $\left.10^{11} \mathrm{t}\right) \hat{\mathbf{k}} \mathrm{V} / \mathrm{m}$. The corresponding magnetic field $\overrightarrow{\mathrm{B}}$ will be

1 $\overrightarrow{\mathrm{B}}=3 \times 10^{-7} \sin \left(0.5 \times 10^{3} \mathrm{x}+1.5 \times 10^{11} \mathrm{t}\right) \hat{\mathrm{i}} \mathrm{T}$
2 $\vec{B}=3 \times 10^{-7} \sin \left(0.5 \times 10^{3} \mathrm{x}+1.5 \times 10^{11} \mathrm{t}\right) \hat{\mathrm{j} T}$
3 $\vec{B}=27 \times 10^{9} \sin \left(0.5 \times 10^{3} \mathrm{x}+1.5 \times 10^{11} \mathrm{t}\right) \hat{\mathrm{j} T}$
4 $\overrightarrow{\mathrm{B}}=3 \times 10^{-7} \sin \left(0.5 \times 10^{3} \mathrm{x}+1.5 \times 10^{11} \mathrm{t}\right) \hat{\mathrm{k}} \mathrm{T}$
Electromagnetic Wave

155500 A plane electromagnetic wave of frequency 25 $\mathrm{MHz}$ travels in free space along the $\mathrm{X}$ direction. At a particular point in space and time, where $\bar{B}=2.1 \times 10^{-8} \hat{k}$ T then find $\bar{E}$ at this point?

1 $-2.1 \hat{\mathrm{j}} \frac{\mathrm{V}}{\mathrm{m}}$
2 $6.3 \hat{j} \frac{\mathrm{V}}{\mathrm{m}}$
3 $4.2 \hat{\mathrm{j}} \frac{\mathrm{V}}{\mathrm{m}}$
4 $-3.2 \hat{\mathrm{j}} \frac{\mathrm{V}}{\mathrm{m}}$
Electromagnetic Wave

155501 If an electromagnetic wave of frequency $5 \mathrm{MHz}$ travels from vacuum into a dielectric medium of electrical permittivity $\varepsilon_{\mathrm{r}}=4$, then its (take $\mu_{\mathrm{r}}$ =1)

1 wavelength is halved and the frequency remains unchanged
2 wavelength and frequency are both doubled
3 wavelength and frequency both remain unchanged
4 wavelength is doubled but the frequency remains unchanged
5 wavelength remains unchanged but the frequency is doubled
Electromagnetic Wave

155502 A plane electromagnetic wave travel in free space along $x$-axis. At a particular point in space, the electric field along $y$-axis is $9.3 \mathrm{Vm}^{-1}$. The magnetic induction along $\mathrm{z}$-axis is

1 $3.10 \times 10^{-8} \mathrm{~T}$
2 $3.00 \times 10^{-5} \mathrm{~T}$
3 $3.00 \times 10^{-6} \mathrm{~T}$
4 $9.30 \times 10^{-6} \mathrm{~T}$
Electromagnetic Wave

155498 For a plane electromagnetic wave, the electric field is given by $\overrightarrow{\mathbf{E}}=90 \sin \left(0.5 \times 10^{3} \mathrm{x}+1.5 \times\right.$ $\left.10^{11} \mathrm{t}\right) \hat{\mathbf{k}} \mathrm{V} / \mathrm{m}$. The corresponding magnetic field $\overrightarrow{\mathrm{B}}$ will be

1 $\overrightarrow{\mathrm{B}}=3 \times 10^{-7} \sin \left(0.5 \times 10^{3} \mathrm{x}+1.5 \times 10^{11} \mathrm{t}\right) \hat{\mathrm{i}} \mathrm{T}$
2 $\vec{B}=3 \times 10^{-7} \sin \left(0.5 \times 10^{3} \mathrm{x}+1.5 \times 10^{11} \mathrm{t}\right) \hat{\mathrm{j} T}$
3 $\vec{B}=27 \times 10^{9} \sin \left(0.5 \times 10^{3} \mathrm{x}+1.5 \times 10^{11} \mathrm{t}\right) \hat{\mathrm{j} T}$
4 $\overrightarrow{\mathrm{B}}=3 \times 10^{-7} \sin \left(0.5 \times 10^{3} \mathrm{x}+1.5 \times 10^{11} \mathrm{t}\right) \hat{\mathrm{k}} \mathrm{T}$
Electromagnetic Wave

155500 A plane electromagnetic wave of frequency 25 $\mathrm{MHz}$ travels in free space along the $\mathrm{X}$ direction. At a particular point in space and time, where $\bar{B}=2.1 \times 10^{-8} \hat{k}$ T then find $\bar{E}$ at this point?

1 $-2.1 \hat{\mathrm{j}} \frac{\mathrm{V}}{\mathrm{m}}$
2 $6.3 \hat{j} \frac{\mathrm{V}}{\mathrm{m}}$
3 $4.2 \hat{\mathrm{j}} \frac{\mathrm{V}}{\mathrm{m}}$
4 $-3.2 \hat{\mathrm{j}} \frac{\mathrm{V}}{\mathrm{m}}$
Electromagnetic Wave

155501 If an electromagnetic wave of frequency $5 \mathrm{MHz}$ travels from vacuum into a dielectric medium of electrical permittivity $\varepsilon_{\mathrm{r}}=4$, then its (take $\mu_{\mathrm{r}}$ =1)

1 wavelength is halved and the frequency remains unchanged
2 wavelength and frequency are both doubled
3 wavelength and frequency both remain unchanged
4 wavelength is doubled but the frequency remains unchanged
5 wavelength remains unchanged but the frequency is doubled
Electromagnetic Wave

155502 A plane electromagnetic wave travel in free space along $x$-axis. At a particular point in space, the electric field along $y$-axis is $9.3 \mathrm{Vm}^{-1}$. The magnetic induction along $\mathrm{z}$-axis is

1 $3.10 \times 10^{-8} \mathrm{~T}$
2 $3.00 \times 10^{-5} \mathrm{~T}$
3 $3.00 \times 10^{-6} \mathrm{~T}$
4 $9.30 \times 10^{-6} \mathrm{~T}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Electromagnetic Wave

155498 For a plane electromagnetic wave, the electric field is given by $\overrightarrow{\mathbf{E}}=90 \sin \left(0.5 \times 10^{3} \mathrm{x}+1.5 \times\right.$ $\left.10^{11} \mathrm{t}\right) \hat{\mathbf{k}} \mathrm{V} / \mathrm{m}$. The corresponding magnetic field $\overrightarrow{\mathrm{B}}$ will be

1 $\overrightarrow{\mathrm{B}}=3 \times 10^{-7} \sin \left(0.5 \times 10^{3} \mathrm{x}+1.5 \times 10^{11} \mathrm{t}\right) \hat{\mathrm{i}} \mathrm{T}$
2 $\vec{B}=3 \times 10^{-7} \sin \left(0.5 \times 10^{3} \mathrm{x}+1.5 \times 10^{11} \mathrm{t}\right) \hat{\mathrm{j} T}$
3 $\vec{B}=27 \times 10^{9} \sin \left(0.5 \times 10^{3} \mathrm{x}+1.5 \times 10^{11} \mathrm{t}\right) \hat{\mathrm{j} T}$
4 $\overrightarrow{\mathrm{B}}=3 \times 10^{-7} \sin \left(0.5 \times 10^{3} \mathrm{x}+1.5 \times 10^{11} \mathrm{t}\right) \hat{\mathrm{k}} \mathrm{T}$
Electromagnetic Wave

155500 A plane electromagnetic wave of frequency 25 $\mathrm{MHz}$ travels in free space along the $\mathrm{X}$ direction. At a particular point in space and time, where $\bar{B}=2.1 \times 10^{-8} \hat{k}$ T then find $\bar{E}$ at this point?

1 $-2.1 \hat{\mathrm{j}} \frac{\mathrm{V}}{\mathrm{m}}$
2 $6.3 \hat{j} \frac{\mathrm{V}}{\mathrm{m}}$
3 $4.2 \hat{\mathrm{j}} \frac{\mathrm{V}}{\mathrm{m}}$
4 $-3.2 \hat{\mathrm{j}} \frac{\mathrm{V}}{\mathrm{m}}$
Electromagnetic Wave

155501 If an electromagnetic wave of frequency $5 \mathrm{MHz}$ travels from vacuum into a dielectric medium of electrical permittivity $\varepsilon_{\mathrm{r}}=4$, then its (take $\mu_{\mathrm{r}}$ =1)

1 wavelength is halved and the frequency remains unchanged
2 wavelength and frequency are both doubled
3 wavelength and frequency both remain unchanged
4 wavelength is doubled but the frequency remains unchanged
5 wavelength remains unchanged but the frequency is doubled
Electromagnetic Wave

155502 A plane electromagnetic wave travel in free space along $x$-axis. At a particular point in space, the electric field along $y$-axis is $9.3 \mathrm{Vm}^{-1}$. The magnetic induction along $\mathrm{z}$-axis is

1 $3.10 \times 10^{-8} \mathrm{~T}$
2 $3.00 \times 10^{-5} \mathrm{~T}$
3 $3.00 \times 10^{-6} \mathrm{~T}$
4 $9.30 \times 10^{-6} \mathrm{~T}$