DisplacementCurrent
Electromagnetic Wave

155465 In a plane electromagnetic wave travelling in free space, the electric field component oscillated sinusoidally at a frequency of $2.0 \times$ $10^{10} \mathrm{~Hz}$ and amplitude $48 \mathrm{Vm}^{-1}$. Then the amplitude of oscillating magnetic field is : (Speed of light in free space $=\mathbf{3} \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ )

1 $1.6 \times 10^{-8} \mathrm{~T}$
2 $1.6 \times 10^{-7} \mathrm{~T}$
3 $1.6 \times 10^{-6} \mathrm{~T}$
4 $1.6 \times 10^{-9} \mathrm{~T}$
Electromagnetic Wave

155467 Match List I with List II
| List-I | | List-II | |
| :--- | :--- | :--- | :--- |
| A. | Gauss's Law in \lt br> Electrostatics | 1. | $\mathfrak{f} \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{d}} l=-\frac{\mathrm{d} \phi_{\mathrm{B}}}{\mathrm{dt}}$ |
| B. | Faraday's law | 2. | $\mathfrak{f} \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{d} A}=0$ |
| C. | Gauss's Law in \lt br> Magnetism | 3. | $\mathfrak{f} \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{d}} l=\mu_0 \mathrm{i}_{\mathrm{c}}+\mu_0 \varepsilon_0 \frac{\mathrm{d} \phi_{\mathrm{E}}}{\mathrm{dt}}$ |
| D. | Ampere- \lt br> Maxwell Law | 4. | $\mathfrak{f} \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{ds}}=\frac{\mathrm{q}}{\varepsilon_0}$ |
Choose the correct answer from the options given below :

1 A-1, B-2, C-3, D-4
2 A-4, B-1, C-2, D-3
3 A-3, B-4, C-1, D-2
4 A-2, B-3, C-4, D-1
Electromagnetic Wave

155468 In a plane EM wave the electric field oscillates sinusoidally at a frequency of $30 \mathrm{MHz}$ and amplitude $150 \mathrm{~V} / \mathrm{m}$. Identify the correct expression of $\vec{B}$ assuming the wave is propagating along $\mathrm{x}$-axis and is oscillating along $\mathbf{y}$-axis.

1 $5 \times 10^{-7} \sin \left[\frac{\mathrm{x}}{3}-6 \times 10^{+7} \mathrm{t}\right] \hat{\mathrm{z}} \mathrm{T}$
2 $5 \times 10^{-7} \sin \left[\pi\left(\frac{\mathrm{x}}{5}-6 \times 10^{+7} \mathrm{t}\right)\right] \hat{\mathrm{z}} \mathrm{T}$
3 $5 \times 10^{-7} \sin \left[\pi\left(\frac{\mathrm{x}}{10}-3 \times 10^{+7} \mathrm{t}\right)\right] \hat{\mathrm{z}} \mathrm{T}$
4 $5 \times 10^{-7} \sin \left[\pi\left(\frac{2 \mathrm{x}}{5}-6 \times 10^{+8} \mathrm{t}\right)\right] \hat{\mathrm{z} T}$
Electromagnetic Wave

155474 The wavelength of electromagnetic waves of frequency $5 \times 10^{14} \mathrm{~Hz}$ is (in angstrom) is

1 5000
2 3500
3 6200
4 6000
Electromagnetic Wave

155477 If $\varepsilon_{0}$ and $\mu_{0}$ represent the permittivity and permittivity of vacuum and $\varepsilon$ and $\mu$ represent the permittivity and permeability of medium, then refractive index of the medium is given by

1 $\sqrt{\frac{\varepsilon_{0} \mu_{0}}{\varepsilon \mu}}$
2 $\sqrt{\frac{\varepsilon \mu}{\varepsilon_{0} \mu_{0}}}$
3 $\sqrt{\frac{\mu_{0} \varepsilon_{0}}{\varepsilon}}$
4 $\sqrt{\frac{\mu_{0} \varepsilon_{0}}{\mu}}$
Electromagnetic Wave

155465 In a plane electromagnetic wave travelling in free space, the electric field component oscillated sinusoidally at a frequency of $2.0 \times$ $10^{10} \mathrm{~Hz}$ and amplitude $48 \mathrm{Vm}^{-1}$. Then the amplitude of oscillating magnetic field is : (Speed of light in free space $=\mathbf{3} \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ )

1 $1.6 \times 10^{-8} \mathrm{~T}$
2 $1.6 \times 10^{-7} \mathrm{~T}$
3 $1.6 \times 10^{-6} \mathrm{~T}$
4 $1.6 \times 10^{-9} \mathrm{~T}$
Electromagnetic Wave

155467 Match List I with List II
| List-I | | List-II | |
| :--- | :--- | :--- | :--- |
| A. | Gauss's Law in \lt br> Electrostatics | 1. | $\mathfrak{f} \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{d}} l=-\frac{\mathrm{d} \phi_{\mathrm{B}}}{\mathrm{dt}}$ |
| B. | Faraday's law | 2. | $\mathfrak{f} \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{d} A}=0$ |
| C. | Gauss's Law in \lt br> Magnetism | 3. | $\mathfrak{f} \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{d}} l=\mu_0 \mathrm{i}_{\mathrm{c}}+\mu_0 \varepsilon_0 \frac{\mathrm{d} \phi_{\mathrm{E}}}{\mathrm{dt}}$ |
| D. | Ampere- \lt br> Maxwell Law | 4. | $\mathfrak{f} \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{ds}}=\frac{\mathrm{q}}{\varepsilon_0}$ |
Choose the correct answer from the options given below :

1 A-1, B-2, C-3, D-4
2 A-4, B-1, C-2, D-3
3 A-3, B-4, C-1, D-2
4 A-2, B-3, C-4, D-1
Electromagnetic Wave

155468 In a plane EM wave the electric field oscillates sinusoidally at a frequency of $30 \mathrm{MHz}$ and amplitude $150 \mathrm{~V} / \mathrm{m}$. Identify the correct expression of $\vec{B}$ assuming the wave is propagating along $\mathrm{x}$-axis and is oscillating along $\mathbf{y}$-axis.

1 $5 \times 10^{-7} \sin \left[\frac{\mathrm{x}}{3}-6 \times 10^{+7} \mathrm{t}\right] \hat{\mathrm{z}} \mathrm{T}$
2 $5 \times 10^{-7} \sin \left[\pi\left(\frac{\mathrm{x}}{5}-6 \times 10^{+7} \mathrm{t}\right)\right] \hat{\mathrm{z}} \mathrm{T}$
3 $5 \times 10^{-7} \sin \left[\pi\left(\frac{\mathrm{x}}{10}-3 \times 10^{+7} \mathrm{t}\right)\right] \hat{\mathrm{z}} \mathrm{T}$
4 $5 \times 10^{-7} \sin \left[\pi\left(\frac{2 \mathrm{x}}{5}-6 \times 10^{+8} \mathrm{t}\right)\right] \hat{\mathrm{z} T}$
Electromagnetic Wave

155474 The wavelength of electromagnetic waves of frequency $5 \times 10^{14} \mathrm{~Hz}$ is (in angstrom) is

1 5000
2 3500
3 6200
4 6000
Electromagnetic Wave

155477 If $\varepsilon_{0}$ and $\mu_{0}$ represent the permittivity and permittivity of vacuum and $\varepsilon$ and $\mu$ represent the permittivity and permeability of medium, then refractive index of the medium is given by

1 $\sqrt{\frac{\varepsilon_{0} \mu_{0}}{\varepsilon \mu}}$
2 $\sqrt{\frac{\varepsilon \mu}{\varepsilon_{0} \mu_{0}}}$
3 $\sqrt{\frac{\mu_{0} \varepsilon_{0}}{\varepsilon}}$
4 $\sqrt{\frac{\mu_{0} \varepsilon_{0}}{\mu}}$
Electromagnetic Wave

155465 In a plane electromagnetic wave travelling in free space, the electric field component oscillated sinusoidally at a frequency of $2.0 \times$ $10^{10} \mathrm{~Hz}$ and amplitude $48 \mathrm{Vm}^{-1}$. Then the amplitude of oscillating magnetic field is : (Speed of light in free space $=\mathbf{3} \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ )

1 $1.6 \times 10^{-8} \mathrm{~T}$
2 $1.6 \times 10^{-7} \mathrm{~T}$
3 $1.6 \times 10^{-6} \mathrm{~T}$
4 $1.6 \times 10^{-9} \mathrm{~T}$
Electromagnetic Wave

155467 Match List I with List II
| List-I | | List-II | |
| :--- | :--- | :--- | :--- |
| A. | Gauss's Law in \lt br> Electrostatics | 1. | $\mathfrak{f} \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{d}} l=-\frac{\mathrm{d} \phi_{\mathrm{B}}}{\mathrm{dt}}$ |
| B. | Faraday's law | 2. | $\mathfrak{f} \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{d} A}=0$ |
| C. | Gauss's Law in \lt br> Magnetism | 3. | $\mathfrak{f} \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{d}} l=\mu_0 \mathrm{i}_{\mathrm{c}}+\mu_0 \varepsilon_0 \frac{\mathrm{d} \phi_{\mathrm{E}}}{\mathrm{dt}}$ |
| D. | Ampere- \lt br> Maxwell Law | 4. | $\mathfrak{f} \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{ds}}=\frac{\mathrm{q}}{\varepsilon_0}$ |
Choose the correct answer from the options given below :

1 A-1, B-2, C-3, D-4
2 A-4, B-1, C-2, D-3
3 A-3, B-4, C-1, D-2
4 A-2, B-3, C-4, D-1
Electromagnetic Wave

155468 In a plane EM wave the electric field oscillates sinusoidally at a frequency of $30 \mathrm{MHz}$ and amplitude $150 \mathrm{~V} / \mathrm{m}$. Identify the correct expression of $\vec{B}$ assuming the wave is propagating along $\mathrm{x}$-axis and is oscillating along $\mathbf{y}$-axis.

1 $5 \times 10^{-7} \sin \left[\frac{\mathrm{x}}{3}-6 \times 10^{+7} \mathrm{t}\right] \hat{\mathrm{z}} \mathrm{T}$
2 $5 \times 10^{-7} \sin \left[\pi\left(\frac{\mathrm{x}}{5}-6 \times 10^{+7} \mathrm{t}\right)\right] \hat{\mathrm{z}} \mathrm{T}$
3 $5 \times 10^{-7} \sin \left[\pi\left(\frac{\mathrm{x}}{10}-3 \times 10^{+7} \mathrm{t}\right)\right] \hat{\mathrm{z}} \mathrm{T}$
4 $5 \times 10^{-7} \sin \left[\pi\left(\frac{2 \mathrm{x}}{5}-6 \times 10^{+8} \mathrm{t}\right)\right] \hat{\mathrm{z} T}$
Electromagnetic Wave

155474 The wavelength of electromagnetic waves of frequency $5 \times 10^{14} \mathrm{~Hz}$ is (in angstrom) is

1 5000
2 3500
3 6200
4 6000
Electromagnetic Wave

155477 If $\varepsilon_{0}$ and $\mu_{0}$ represent the permittivity and permittivity of vacuum and $\varepsilon$ and $\mu$ represent the permittivity and permeability of medium, then refractive index of the medium is given by

1 $\sqrt{\frac{\varepsilon_{0} \mu_{0}}{\varepsilon \mu}}$
2 $\sqrt{\frac{\varepsilon \mu}{\varepsilon_{0} \mu_{0}}}$
3 $\sqrt{\frac{\mu_{0} \varepsilon_{0}}{\varepsilon}}$
4 $\sqrt{\frac{\mu_{0} \varepsilon_{0}}{\mu}}$
Electromagnetic Wave

155465 In a plane electromagnetic wave travelling in free space, the electric field component oscillated sinusoidally at a frequency of $2.0 \times$ $10^{10} \mathrm{~Hz}$ and amplitude $48 \mathrm{Vm}^{-1}$. Then the amplitude of oscillating magnetic field is : (Speed of light in free space $=\mathbf{3} \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ )

1 $1.6 \times 10^{-8} \mathrm{~T}$
2 $1.6 \times 10^{-7} \mathrm{~T}$
3 $1.6 \times 10^{-6} \mathrm{~T}$
4 $1.6 \times 10^{-9} \mathrm{~T}$
Electromagnetic Wave

155467 Match List I with List II
| List-I | | List-II | |
| :--- | :--- | :--- | :--- |
| A. | Gauss's Law in \lt br> Electrostatics | 1. | $\mathfrak{f} \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{d}} l=-\frac{\mathrm{d} \phi_{\mathrm{B}}}{\mathrm{dt}}$ |
| B. | Faraday's law | 2. | $\mathfrak{f} \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{d} A}=0$ |
| C. | Gauss's Law in \lt br> Magnetism | 3. | $\mathfrak{f} \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{d}} l=\mu_0 \mathrm{i}_{\mathrm{c}}+\mu_0 \varepsilon_0 \frac{\mathrm{d} \phi_{\mathrm{E}}}{\mathrm{dt}}$ |
| D. | Ampere- \lt br> Maxwell Law | 4. | $\mathfrak{f} \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{ds}}=\frac{\mathrm{q}}{\varepsilon_0}$ |
Choose the correct answer from the options given below :

1 A-1, B-2, C-3, D-4
2 A-4, B-1, C-2, D-3
3 A-3, B-4, C-1, D-2
4 A-2, B-3, C-4, D-1
Electromagnetic Wave

155468 In a plane EM wave the electric field oscillates sinusoidally at a frequency of $30 \mathrm{MHz}$ and amplitude $150 \mathrm{~V} / \mathrm{m}$. Identify the correct expression of $\vec{B}$ assuming the wave is propagating along $\mathrm{x}$-axis and is oscillating along $\mathbf{y}$-axis.

1 $5 \times 10^{-7} \sin \left[\frac{\mathrm{x}}{3}-6 \times 10^{+7} \mathrm{t}\right] \hat{\mathrm{z}} \mathrm{T}$
2 $5 \times 10^{-7} \sin \left[\pi\left(\frac{\mathrm{x}}{5}-6 \times 10^{+7} \mathrm{t}\right)\right] \hat{\mathrm{z}} \mathrm{T}$
3 $5 \times 10^{-7} \sin \left[\pi\left(\frac{\mathrm{x}}{10}-3 \times 10^{+7} \mathrm{t}\right)\right] \hat{\mathrm{z}} \mathrm{T}$
4 $5 \times 10^{-7} \sin \left[\pi\left(\frac{2 \mathrm{x}}{5}-6 \times 10^{+8} \mathrm{t}\right)\right] \hat{\mathrm{z} T}$
Electromagnetic Wave

155474 The wavelength of electromagnetic waves of frequency $5 \times 10^{14} \mathrm{~Hz}$ is (in angstrom) is

1 5000
2 3500
3 6200
4 6000
Electromagnetic Wave

155477 If $\varepsilon_{0}$ and $\mu_{0}$ represent the permittivity and permittivity of vacuum and $\varepsilon$ and $\mu$ represent the permittivity and permeability of medium, then refractive index of the medium is given by

1 $\sqrt{\frac{\varepsilon_{0} \mu_{0}}{\varepsilon \mu}}$
2 $\sqrt{\frac{\varepsilon \mu}{\varepsilon_{0} \mu_{0}}}$
3 $\sqrt{\frac{\mu_{0} \varepsilon_{0}}{\varepsilon}}$
4 $\sqrt{\frac{\mu_{0} \varepsilon_{0}}{\mu}}$
Electromagnetic Wave

155465 In a plane electromagnetic wave travelling in free space, the electric field component oscillated sinusoidally at a frequency of $2.0 \times$ $10^{10} \mathrm{~Hz}$ and amplitude $48 \mathrm{Vm}^{-1}$. Then the amplitude of oscillating magnetic field is : (Speed of light in free space $=\mathbf{3} \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ )

1 $1.6 \times 10^{-8} \mathrm{~T}$
2 $1.6 \times 10^{-7} \mathrm{~T}$
3 $1.6 \times 10^{-6} \mathrm{~T}$
4 $1.6 \times 10^{-9} \mathrm{~T}$
Electromagnetic Wave

155467 Match List I with List II
| List-I | | List-II | |
| :--- | :--- | :--- | :--- |
| A. | Gauss's Law in \lt br> Electrostatics | 1. | $\mathfrak{f} \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{d}} l=-\frac{\mathrm{d} \phi_{\mathrm{B}}}{\mathrm{dt}}$ |
| B. | Faraday's law | 2. | $\mathfrak{f} \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{d} A}=0$ |
| C. | Gauss's Law in \lt br> Magnetism | 3. | $\mathfrak{f} \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{d}} l=\mu_0 \mathrm{i}_{\mathrm{c}}+\mu_0 \varepsilon_0 \frac{\mathrm{d} \phi_{\mathrm{E}}}{\mathrm{dt}}$ |
| D. | Ampere- \lt br> Maxwell Law | 4. | $\mathfrak{f} \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{ds}}=\frac{\mathrm{q}}{\varepsilon_0}$ |
Choose the correct answer from the options given below :

1 A-1, B-2, C-3, D-4
2 A-4, B-1, C-2, D-3
3 A-3, B-4, C-1, D-2
4 A-2, B-3, C-4, D-1
Electromagnetic Wave

155468 In a plane EM wave the electric field oscillates sinusoidally at a frequency of $30 \mathrm{MHz}$ and amplitude $150 \mathrm{~V} / \mathrm{m}$. Identify the correct expression of $\vec{B}$ assuming the wave is propagating along $\mathrm{x}$-axis and is oscillating along $\mathbf{y}$-axis.

1 $5 \times 10^{-7} \sin \left[\frac{\mathrm{x}}{3}-6 \times 10^{+7} \mathrm{t}\right] \hat{\mathrm{z}} \mathrm{T}$
2 $5 \times 10^{-7} \sin \left[\pi\left(\frac{\mathrm{x}}{5}-6 \times 10^{+7} \mathrm{t}\right)\right] \hat{\mathrm{z}} \mathrm{T}$
3 $5 \times 10^{-7} \sin \left[\pi\left(\frac{\mathrm{x}}{10}-3 \times 10^{+7} \mathrm{t}\right)\right] \hat{\mathrm{z}} \mathrm{T}$
4 $5 \times 10^{-7} \sin \left[\pi\left(\frac{2 \mathrm{x}}{5}-6 \times 10^{+8} \mathrm{t}\right)\right] \hat{\mathrm{z} T}$
Electromagnetic Wave

155474 The wavelength of electromagnetic waves of frequency $5 \times 10^{14} \mathrm{~Hz}$ is (in angstrom) is

1 5000
2 3500
3 6200
4 6000
Electromagnetic Wave

155477 If $\varepsilon_{0}$ and $\mu_{0}$ represent the permittivity and permittivity of vacuum and $\varepsilon$ and $\mu$ represent the permittivity and permeability of medium, then refractive index of the medium is given by

1 $\sqrt{\frac{\varepsilon_{0} \mu_{0}}{\varepsilon \mu}}$
2 $\sqrt{\frac{\varepsilon \mu}{\varepsilon_{0} \mu_{0}}}$
3 $\sqrt{\frac{\mu_{0} \varepsilon_{0}}{\varepsilon}}$
4 $\sqrt{\frac{\mu_{0} \varepsilon_{0}}{\mu}}$