155465 In a plane electromagnetic wave travelling in free space, the electric field component oscillated sinusoidally at a frequency of $2.0 \times$ $10^{10} \mathrm{~Hz}$ and amplitude $48 \mathrm{Vm}^{-1}$. Then the amplitude of oscillating magnetic field is : (Speed of light in free space $=\mathbf{3} \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ )
155467
Match List I with List II
| List-I | | List-II | |
| :--- | :--- | :--- | :--- |
| A. | Gauss's Law in \lt br> Electrostatics | 1. | $\mathfrak{f} \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{d}} l=-\frac{\mathrm{d} \phi_{\mathrm{B}}}{\mathrm{dt}}$ |
| B. | Faraday's law | 2. | $\mathfrak{f} \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{d} A}=0$ |
| C. | Gauss's Law in \lt br> Magnetism | 3. | $\mathfrak{f} \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{d}} l=\mu_0 \mathrm{i}_{\mathrm{c}}+\mu_0 \varepsilon_0 \frac{\mathrm{d} \phi_{\mathrm{E}}}{\mathrm{dt}}$ |
| D. | Ampere- \lt br> Maxwell Law | 4. | $\mathfrak{f} \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{ds}}=\frac{\mathrm{q}}{\varepsilon_0}$ |
Choose the correct answer from the options given below :
155468 In a plane EM wave the electric field oscillates sinusoidally at a frequency of $30 \mathrm{MHz}$ and amplitude $150 \mathrm{~V} / \mathrm{m}$. Identify the correct expression of $\vec{B}$ assuming the wave is propagating along $\mathrm{x}$-axis and is oscillating along $\mathbf{y}$-axis.
155465 In a plane electromagnetic wave travelling in free space, the electric field component oscillated sinusoidally at a frequency of $2.0 \times$ $10^{10} \mathrm{~Hz}$ and amplitude $48 \mathrm{Vm}^{-1}$. Then the amplitude of oscillating magnetic field is : (Speed of light in free space $=\mathbf{3} \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ )
155467
Match List I with List II
| List-I | | List-II | |
| :--- | :--- | :--- | :--- |
| A. | Gauss's Law in \lt br> Electrostatics | 1. | $\mathfrak{f} \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{d}} l=-\frac{\mathrm{d} \phi_{\mathrm{B}}}{\mathrm{dt}}$ |
| B. | Faraday's law | 2. | $\mathfrak{f} \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{d} A}=0$ |
| C. | Gauss's Law in \lt br> Magnetism | 3. | $\mathfrak{f} \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{d}} l=\mu_0 \mathrm{i}_{\mathrm{c}}+\mu_0 \varepsilon_0 \frac{\mathrm{d} \phi_{\mathrm{E}}}{\mathrm{dt}}$ |
| D. | Ampere- \lt br> Maxwell Law | 4. | $\mathfrak{f} \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{ds}}=\frac{\mathrm{q}}{\varepsilon_0}$ |
Choose the correct answer from the options given below :
155468 In a plane EM wave the electric field oscillates sinusoidally at a frequency of $30 \mathrm{MHz}$ and amplitude $150 \mathrm{~V} / \mathrm{m}$. Identify the correct expression of $\vec{B}$ assuming the wave is propagating along $\mathrm{x}$-axis and is oscillating along $\mathbf{y}$-axis.
155465 In a plane electromagnetic wave travelling in free space, the electric field component oscillated sinusoidally at a frequency of $2.0 \times$ $10^{10} \mathrm{~Hz}$ and amplitude $48 \mathrm{Vm}^{-1}$. Then the amplitude of oscillating magnetic field is : (Speed of light in free space $=\mathbf{3} \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ )
155467
Match List I with List II
| List-I | | List-II | |
| :--- | :--- | :--- | :--- |
| A. | Gauss's Law in \lt br> Electrostatics | 1. | $\mathfrak{f} \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{d}} l=-\frac{\mathrm{d} \phi_{\mathrm{B}}}{\mathrm{dt}}$ |
| B. | Faraday's law | 2. | $\mathfrak{f} \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{d} A}=0$ |
| C. | Gauss's Law in \lt br> Magnetism | 3. | $\mathfrak{f} \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{d}} l=\mu_0 \mathrm{i}_{\mathrm{c}}+\mu_0 \varepsilon_0 \frac{\mathrm{d} \phi_{\mathrm{E}}}{\mathrm{dt}}$ |
| D. | Ampere- \lt br> Maxwell Law | 4. | $\mathfrak{f} \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{ds}}=\frac{\mathrm{q}}{\varepsilon_0}$ |
Choose the correct answer from the options given below :
155468 In a plane EM wave the electric field oscillates sinusoidally at a frequency of $30 \mathrm{MHz}$ and amplitude $150 \mathrm{~V} / \mathrm{m}$. Identify the correct expression of $\vec{B}$ assuming the wave is propagating along $\mathrm{x}$-axis and is oscillating along $\mathbf{y}$-axis.
155465 In a plane electromagnetic wave travelling in free space, the electric field component oscillated sinusoidally at a frequency of $2.0 \times$ $10^{10} \mathrm{~Hz}$ and amplitude $48 \mathrm{Vm}^{-1}$. Then the amplitude of oscillating magnetic field is : (Speed of light in free space $=\mathbf{3} \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ )
155467
Match List I with List II
| List-I | | List-II | |
| :--- | :--- | :--- | :--- |
| A. | Gauss's Law in \lt br> Electrostatics | 1. | $\mathfrak{f} \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{d}} l=-\frac{\mathrm{d} \phi_{\mathrm{B}}}{\mathrm{dt}}$ |
| B. | Faraday's law | 2. | $\mathfrak{f} \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{d} A}=0$ |
| C. | Gauss's Law in \lt br> Magnetism | 3. | $\mathfrak{f} \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{d}} l=\mu_0 \mathrm{i}_{\mathrm{c}}+\mu_0 \varepsilon_0 \frac{\mathrm{d} \phi_{\mathrm{E}}}{\mathrm{dt}}$ |
| D. | Ampere- \lt br> Maxwell Law | 4. | $\mathfrak{f} \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{ds}}=\frac{\mathrm{q}}{\varepsilon_0}$ |
Choose the correct answer from the options given below :
155468 In a plane EM wave the electric field oscillates sinusoidally at a frequency of $30 \mathrm{MHz}$ and amplitude $150 \mathrm{~V} / \mathrm{m}$. Identify the correct expression of $\vec{B}$ assuming the wave is propagating along $\mathrm{x}$-axis and is oscillating along $\mathbf{y}$-axis.
155465 In a plane electromagnetic wave travelling in free space, the electric field component oscillated sinusoidally at a frequency of $2.0 \times$ $10^{10} \mathrm{~Hz}$ and amplitude $48 \mathrm{Vm}^{-1}$. Then the amplitude of oscillating magnetic field is : (Speed of light in free space $=\mathbf{3} \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ )
155467
Match List I with List II
| List-I | | List-II | |
| :--- | :--- | :--- | :--- |
| A. | Gauss's Law in \lt br> Electrostatics | 1. | $\mathfrak{f} \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{d}} l=-\frac{\mathrm{d} \phi_{\mathrm{B}}}{\mathrm{dt}}$ |
| B. | Faraday's law | 2. | $\mathfrak{f} \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{d} A}=0$ |
| C. | Gauss's Law in \lt br> Magnetism | 3. | $\mathfrak{f} \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{d}} l=\mu_0 \mathrm{i}_{\mathrm{c}}+\mu_0 \varepsilon_0 \frac{\mathrm{d} \phi_{\mathrm{E}}}{\mathrm{dt}}$ |
| D. | Ampere- \lt br> Maxwell Law | 4. | $\mathfrak{f} \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{ds}}=\frac{\mathrm{q}}{\varepsilon_0}$ |
Choose the correct answer from the options given below :
155468 In a plane EM wave the electric field oscillates sinusoidally at a frequency of $30 \mathrm{MHz}$ and amplitude $150 \mathrm{~V} / \mathrm{m}$. Identify the correct expression of $\vec{B}$ assuming the wave is propagating along $\mathrm{x}$-axis and is oscillating along $\mathbf{y}$-axis.