Semiconductor Electronics Material Devices and Simple Circuits
150831
Assume that each diode as shown in the figure has a forward bias resistance of \(50 \Omega\) and an infinite reverse bias resistance. The current through the resistance \(150 \Omega\) is
1 \(0.66 \mathrm{~A}\)
2 \(0.05 \mathrm{~A}\)
3 zero
4 \(0.04 \mathrm{~A}\)
Explanation:
D Given that, Diode \(D_2\) is reverse bias so it will behave as open circuit. So new circuit, Apply KVL is loop \(10-50 \mathrm{I}-50 \mathrm{I}-150 \mathrm{I}=0\) \(250 \mathrm{I}=10\) \(\mathrm{I}=\frac{10}{250}=0.04\) \(I=0.04 \mathrm{~A}\)
WB JEE 2015
Semiconductor Electronics Material Devices and Simple Circuits
150832
A junction diode has a resistance of \(25 \Omega\) when forward biased and \(2500 \Omega\) when reverse biased. The current in the diode, for the arrangement shown will be
1 \(\frac{1}{15} \mathrm{~A}\)
2 \(\frac{1}{7} \mathrm{~A}\)
3 \(\frac{1}{25} \mathrm{~A}\)
4 \(\frac{1}{480} \mathrm{~A}\)
Explanation:
B Given that, \(\because \quad\) Forward bias resistance \(\left(\mathrm{r}_{\mathrm{f}}\right)=25 \Omega\) Reverse base resistance \(\left(r_R\right)=2500 \Omega\) Diode will conduct for forward bias condition. \(\therefore\) Apply KVL, \(5-r_f \mathrm{I}-\mathrm{I} \times 10-0=0\) \(5-25 \mathrm{I}-10 \mathrm{I}=0\) \(35 \mathrm{I}=5\) \(\mathrm{I}=\frac{5}{35}=\frac{1}{7}\) \(\mathrm{I}=\frac{1}{7} \mathrm{~A}\)
WB JEE 2009
Semiconductor Electronics Material Devices and Simple Circuits
150834
The slope of plate characteristic of a vacuum diode is \(2 \times 10^{-2} \mathrm{mAV}^{-1}\). The plate resistance of diode will be
Semiconductor Electronics Material Devices and Simple Circuits
150838
The change in current through a junction diode is \(1.2 \mathrm{~mA}\) when the forward bias voltage is changed by \(0.6 \mathrm{~V}\). The dynamic resistance is
1 \(500 \Omega\)
2 \(300 \Omega\)
3 \(150 \Omega\)
4 \(250 \Omega\)
Explanation:
B Given that, Change in current \(\Delta \mathrm{I}=1.2 \mathrm{~mA}\) Change in forward voltage \(\Delta \mathrm{V}=0.6 \mathrm{~V}\) \(\because\) Dynamic Resistance, \(\mathrm{r}_{\mathrm{d}}=\frac{\Delta \mathrm{V}}{\Delta \mathrm{I}}=\frac{0.6}{1.2 \times 10^{-3}}\) \(\mathrm{r}_{\mathrm{d}}=\frac{10^3}{2}=500 \Omega\) \(\mathrm{r}_{\mathrm{d}}=500 \Omega\)
TS EAMCET (Engg.)-2016
Semiconductor Electronics Material Devices and Simple Circuits
150841
A p-n junction is fabricated from a semiconductor with band gap of \(2.8 \mathrm{eV}\). What approximate wavelength it cannot detect? use \(h\) \(=\mathbf{6} \times 10^{-34} \mathrm{~m}^2 \mathrm{~kg} / \mathrm{s}\)
1 \(100 \mathrm{~nm}\)
2 \(200 \mathrm{~nm}\)
3 \(400 \mathrm{~nm}\)
4 \(600 \mathrm{~nm}\)
Explanation:
C Given that, Energy of Band gap \(=2.8 \mathrm{eV}=2.8 \times 1.6 \times 10^{-19} \mathrm{~V}\) \(\mathrm{h} =6 \times 10^{-34} \mathrm{~J}-\mathrm{s}\) \(\because \quad \mathrm{E} =\frac{\mathrm{hc}}{\lambda}\) \(\therefore \quad \lambda =\frac{\mathrm{hc}}{\mathrm{E}}=\frac{6 \times 10^{-34} \times 3 \times 10^8}{2.8 \times 1.6 \times 10^{-19}}\) \(=\frac{18 \times 10^{-7}}{2.8 \times 1.6}=4.017 \times 10^{-7}\) \(\lambda =401.7 \times 10^{-9}\) \(\lambda = 400 \mathrm{~nm}\)
Semiconductor Electronics Material Devices and Simple Circuits
150831
Assume that each diode as shown in the figure has a forward bias resistance of \(50 \Omega\) and an infinite reverse bias resistance. The current through the resistance \(150 \Omega\) is
1 \(0.66 \mathrm{~A}\)
2 \(0.05 \mathrm{~A}\)
3 zero
4 \(0.04 \mathrm{~A}\)
Explanation:
D Given that, Diode \(D_2\) is reverse bias so it will behave as open circuit. So new circuit, Apply KVL is loop \(10-50 \mathrm{I}-50 \mathrm{I}-150 \mathrm{I}=0\) \(250 \mathrm{I}=10\) \(\mathrm{I}=\frac{10}{250}=0.04\) \(I=0.04 \mathrm{~A}\)
WB JEE 2015
Semiconductor Electronics Material Devices and Simple Circuits
150832
A junction diode has a resistance of \(25 \Omega\) when forward biased and \(2500 \Omega\) when reverse biased. The current in the diode, for the arrangement shown will be
1 \(\frac{1}{15} \mathrm{~A}\)
2 \(\frac{1}{7} \mathrm{~A}\)
3 \(\frac{1}{25} \mathrm{~A}\)
4 \(\frac{1}{480} \mathrm{~A}\)
Explanation:
B Given that, \(\because \quad\) Forward bias resistance \(\left(\mathrm{r}_{\mathrm{f}}\right)=25 \Omega\) Reverse base resistance \(\left(r_R\right)=2500 \Omega\) Diode will conduct for forward bias condition. \(\therefore\) Apply KVL, \(5-r_f \mathrm{I}-\mathrm{I} \times 10-0=0\) \(5-25 \mathrm{I}-10 \mathrm{I}=0\) \(35 \mathrm{I}=5\) \(\mathrm{I}=\frac{5}{35}=\frac{1}{7}\) \(\mathrm{I}=\frac{1}{7} \mathrm{~A}\)
WB JEE 2009
Semiconductor Electronics Material Devices and Simple Circuits
150834
The slope of plate characteristic of a vacuum diode is \(2 \times 10^{-2} \mathrm{mAV}^{-1}\). The plate resistance of diode will be
Semiconductor Electronics Material Devices and Simple Circuits
150838
The change in current through a junction diode is \(1.2 \mathrm{~mA}\) when the forward bias voltage is changed by \(0.6 \mathrm{~V}\). The dynamic resistance is
1 \(500 \Omega\)
2 \(300 \Omega\)
3 \(150 \Omega\)
4 \(250 \Omega\)
Explanation:
B Given that, Change in current \(\Delta \mathrm{I}=1.2 \mathrm{~mA}\) Change in forward voltage \(\Delta \mathrm{V}=0.6 \mathrm{~V}\) \(\because\) Dynamic Resistance, \(\mathrm{r}_{\mathrm{d}}=\frac{\Delta \mathrm{V}}{\Delta \mathrm{I}}=\frac{0.6}{1.2 \times 10^{-3}}\) \(\mathrm{r}_{\mathrm{d}}=\frac{10^3}{2}=500 \Omega\) \(\mathrm{r}_{\mathrm{d}}=500 \Omega\)
TS EAMCET (Engg.)-2016
Semiconductor Electronics Material Devices and Simple Circuits
150841
A p-n junction is fabricated from a semiconductor with band gap of \(2.8 \mathrm{eV}\). What approximate wavelength it cannot detect? use \(h\) \(=\mathbf{6} \times 10^{-34} \mathrm{~m}^2 \mathrm{~kg} / \mathrm{s}\)
1 \(100 \mathrm{~nm}\)
2 \(200 \mathrm{~nm}\)
3 \(400 \mathrm{~nm}\)
4 \(600 \mathrm{~nm}\)
Explanation:
C Given that, Energy of Band gap \(=2.8 \mathrm{eV}=2.8 \times 1.6 \times 10^{-19} \mathrm{~V}\) \(\mathrm{h} =6 \times 10^{-34} \mathrm{~J}-\mathrm{s}\) \(\because \quad \mathrm{E} =\frac{\mathrm{hc}}{\lambda}\) \(\therefore \quad \lambda =\frac{\mathrm{hc}}{\mathrm{E}}=\frac{6 \times 10^{-34} \times 3 \times 10^8}{2.8 \times 1.6 \times 10^{-19}}\) \(=\frac{18 \times 10^{-7}}{2.8 \times 1.6}=4.017 \times 10^{-7}\) \(\lambda =401.7 \times 10^{-9}\) \(\lambda = 400 \mathrm{~nm}\)
Semiconductor Electronics Material Devices and Simple Circuits
150831
Assume that each diode as shown in the figure has a forward bias resistance of \(50 \Omega\) and an infinite reverse bias resistance. The current through the resistance \(150 \Omega\) is
1 \(0.66 \mathrm{~A}\)
2 \(0.05 \mathrm{~A}\)
3 zero
4 \(0.04 \mathrm{~A}\)
Explanation:
D Given that, Diode \(D_2\) is reverse bias so it will behave as open circuit. So new circuit, Apply KVL is loop \(10-50 \mathrm{I}-50 \mathrm{I}-150 \mathrm{I}=0\) \(250 \mathrm{I}=10\) \(\mathrm{I}=\frac{10}{250}=0.04\) \(I=0.04 \mathrm{~A}\)
WB JEE 2015
Semiconductor Electronics Material Devices and Simple Circuits
150832
A junction diode has a resistance of \(25 \Omega\) when forward biased and \(2500 \Omega\) when reverse biased. The current in the diode, for the arrangement shown will be
1 \(\frac{1}{15} \mathrm{~A}\)
2 \(\frac{1}{7} \mathrm{~A}\)
3 \(\frac{1}{25} \mathrm{~A}\)
4 \(\frac{1}{480} \mathrm{~A}\)
Explanation:
B Given that, \(\because \quad\) Forward bias resistance \(\left(\mathrm{r}_{\mathrm{f}}\right)=25 \Omega\) Reverse base resistance \(\left(r_R\right)=2500 \Omega\) Diode will conduct for forward bias condition. \(\therefore\) Apply KVL, \(5-r_f \mathrm{I}-\mathrm{I} \times 10-0=0\) \(5-25 \mathrm{I}-10 \mathrm{I}=0\) \(35 \mathrm{I}=5\) \(\mathrm{I}=\frac{5}{35}=\frac{1}{7}\) \(\mathrm{I}=\frac{1}{7} \mathrm{~A}\)
WB JEE 2009
Semiconductor Electronics Material Devices and Simple Circuits
150834
The slope of plate characteristic of a vacuum diode is \(2 \times 10^{-2} \mathrm{mAV}^{-1}\). The plate resistance of diode will be
Semiconductor Electronics Material Devices and Simple Circuits
150838
The change in current through a junction diode is \(1.2 \mathrm{~mA}\) when the forward bias voltage is changed by \(0.6 \mathrm{~V}\). The dynamic resistance is
1 \(500 \Omega\)
2 \(300 \Omega\)
3 \(150 \Omega\)
4 \(250 \Omega\)
Explanation:
B Given that, Change in current \(\Delta \mathrm{I}=1.2 \mathrm{~mA}\) Change in forward voltage \(\Delta \mathrm{V}=0.6 \mathrm{~V}\) \(\because\) Dynamic Resistance, \(\mathrm{r}_{\mathrm{d}}=\frac{\Delta \mathrm{V}}{\Delta \mathrm{I}}=\frac{0.6}{1.2 \times 10^{-3}}\) \(\mathrm{r}_{\mathrm{d}}=\frac{10^3}{2}=500 \Omega\) \(\mathrm{r}_{\mathrm{d}}=500 \Omega\)
TS EAMCET (Engg.)-2016
Semiconductor Electronics Material Devices and Simple Circuits
150841
A p-n junction is fabricated from a semiconductor with band gap of \(2.8 \mathrm{eV}\). What approximate wavelength it cannot detect? use \(h\) \(=\mathbf{6} \times 10^{-34} \mathrm{~m}^2 \mathrm{~kg} / \mathrm{s}\)
1 \(100 \mathrm{~nm}\)
2 \(200 \mathrm{~nm}\)
3 \(400 \mathrm{~nm}\)
4 \(600 \mathrm{~nm}\)
Explanation:
C Given that, Energy of Band gap \(=2.8 \mathrm{eV}=2.8 \times 1.6 \times 10^{-19} \mathrm{~V}\) \(\mathrm{h} =6 \times 10^{-34} \mathrm{~J}-\mathrm{s}\) \(\because \quad \mathrm{E} =\frac{\mathrm{hc}}{\lambda}\) \(\therefore \quad \lambda =\frac{\mathrm{hc}}{\mathrm{E}}=\frac{6 \times 10^{-34} \times 3 \times 10^8}{2.8 \times 1.6 \times 10^{-19}}\) \(=\frac{18 \times 10^{-7}}{2.8 \times 1.6}=4.017 \times 10^{-7}\) \(\lambda =401.7 \times 10^{-9}\) \(\lambda = 400 \mathrm{~nm}\)
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Semiconductor Electronics Material Devices and Simple Circuits
150831
Assume that each diode as shown in the figure has a forward bias resistance of \(50 \Omega\) and an infinite reverse bias resistance. The current through the resistance \(150 \Omega\) is
1 \(0.66 \mathrm{~A}\)
2 \(0.05 \mathrm{~A}\)
3 zero
4 \(0.04 \mathrm{~A}\)
Explanation:
D Given that, Diode \(D_2\) is reverse bias so it will behave as open circuit. So new circuit, Apply KVL is loop \(10-50 \mathrm{I}-50 \mathrm{I}-150 \mathrm{I}=0\) \(250 \mathrm{I}=10\) \(\mathrm{I}=\frac{10}{250}=0.04\) \(I=0.04 \mathrm{~A}\)
WB JEE 2015
Semiconductor Electronics Material Devices and Simple Circuits
150832
A junction diode has a resistance of \(25 \Omega\) when forward biased and \(2500 \Omega\) when reverse biased. The current in the diode, for the arrangement shown will be
1 \(\frac{1}{15} \mathrm{~A}\)
2 \(\frac{1}{7} \mathrm{~A}\)
3 \(\frac{1}{25} \mathrm{~A}\)
4 \(\frac{1}{480} \mathrm{~A}\)
Explanation:
B Given that, \(\because \quad\) Forward bias resistance \(\left(\mathrm{r}_{\mathrm{f}}\right)=25 \Omega\) Reverse base resistance \(\left(r_R\right)=2500 \Omega\) Diode will conduct for forward bias condition. \(\therefore\) Apply KVL, \(5-r_f \mathrm{I}-\mathrm{I} \times 10-0=0\) \(5-25 \mathrm{I}-10 \mathrm{I}=0\) \(35 \mathrm{I}=5\) \(\mathrm{I}=\frac{5}{35}=\frac{1}{7}\) \(\mathrm{I}=\frac{1}{7} \mathrm{~A}\)
WB JEE 2009
Semiconductor Electronics Material Devices and Simple Circuits
150834
The slope of plate characteristic of a vacuum diode is \(2 \times 10^{-2} \mathrm{mAV}^{-1}\). The plate resistance of diode will be
Semiconductor Electronics Material Devices and Simple Circuits
150838
The change in current through a junction diode is \(1.2 \mathrm{~mA}\) when the forward bias voltage is changed by \(0.6 \mathrm{~V}\). The dynamic resistance is
1 \(500 \Omega\)
2 \(300 \Omega\)
3 \(150 \Omega\)
4 \(250 \Omega\)
Explanation:
B Given that, Change in current \(\Delta \mathrm{I}=1.2 \mathrm{~mA}\) Change in forward voltage \(\Delta \mathrm{V}=0.6 \mathrm{~V}\) \(\because\) Dynamic Resistance, \(\mathrm{r}_{\mathrm{d}}=\frac{\Delta \mathrm{V}}{\Delta \mathrm{I}}=\frac{0.6}{1.2 \times 10^{-3}}\) \(\mathrm{r}_{\mathrm{d}}=\frac{10^3}{2}=500 \Omega\) \(\mathrm{r}_{\mathrm{d}}=500 \Omega\)
TS EAMCET (Engg.)-2016
Semiconductor Electronics Material Devices and Simple Circuits
150841
A p-n junction is fabricated from a semiconductor with band gap of \(2.8 \mathrm{eV}\). What approximate wavelength it cannot detect? use \(h\) \(=\mathbf{6} \times 10^{-34} \mathrm{~m}^2 \mathrm{~kg} / \mathrm{s}\)
1 \(100 \mathrm{~nm}\)
2 \(200 \mathrm{~nm}\)
3 \(400 \mathrm{~nm}\)
4 \(600 \mathrm{~nm}\)
Explanation:
C Given that, Energy of Band gap \(=2.8 \mathrm{eV}=2.8 \times 1.6 \times 10^{-19} \mathrm{~V}\) \(\mathrm{h} =6 \times 10^{-34} \mathrm{~J}-\mathrm{s}\) \(\because \quad \mathrm{E} =\frac{\mathrm{hc}}{\lambda}\) \(\therefore \quad \lambda =\frac{\mathrm{hc}}{\mathrm{E}}=\frac{6 \times 10^{-34} \times 3 \times 10^8}{2.8 \times 1.6 \times 10^{-19}}\) \(=\frac{18 \times 10^{-7}}{2.8 \times 1.6}=4.017 \times 10^{-7}\) \(\lambda =401.7 \times 10^{-9}\) \(\lambda = 400 \mathrm{~nm}\)
Semiconductor Electronics Material Devices and Simple Circuits
150831
Assume that each diode as shown in the figure has a forward bias resistance of \(50 \Omega\) and an infinite reverse bias resistance. The current through the resistance \(150 \Omega\) is
1 \(0.66 \mathrm{~A}\)
2 \(0.05 \mathrm{~A}\)
3 zero
4 \(0.04 \mathrm{~A}\)
Explanation:
D Given that, Diode \(D_2\) is reverse bias so it will behave as open circuit. So new circuit, Apply KVL is loop \(10-50 \mathrm{I}-50 \mathrm{I}-150 \mathrm{I}=0\) \(250 \mathrm{I}=10\) \(\mathrm{I}=\frac{10}{250}=0.04\) \(I=0.04 \mathrm{~A}\)
WB JEE 2015
Semiconductor Electronics Material Devices and Simple Circuits
150832
A junction diode has a resistance of \(25 \Omega\) when forward biased and \(2500 \Omega\) when reverse biased. The current in the diode, for the arrangement shown will be
1 \(\frac{1}{15} \mathrm{~A}\)
2 \(\frac{1}{7} \mathrm{~A}\)
3 \(\frac{1}{25} \mathrm{~A}\)
4 \(\frac{1}{480} \mathrm{~A}\)
Explanation:
B Given that, \(\because \quad\) Forward bias resistance \(\left(\mathrm{r}_{\mathrm{f}}\right)=25 \Omega\) Reverse base resistance \(\left(r_R\right)=2500 \Omega\) Diode will conduct for forward bias condition. \(\therefore\) Apply KVL, \(5-r_f \mathrm{I}-\mathrm{I} \times 10-0=0\) \(5-25 \mathrm{I}-10 \mathrm{I}=0\) \(35 \mathrm{I}=5\) \(\mathrm{I}=\frac{5}{35}=\frac{1}{7}\) \(\mathrm{I}=\frac{1}{7} \mathrm{~A}\)
WB JEE 2009
Semiconductor Electronics Material Devices and Simple Circuits
150834
The slope of plate characteristic of a vacuum diode is \(2 \times 10^{-2} \mathrm{mAV}^{-1}\). The plate resistance of diode will be
Semiconductor Electronics Material Devices and Simple Circuits
150838
The change in current through a junction diode is \(1.2 \mathrm{~mA}\) when the forward bias voltage is changed by \(0.6 \mathrm{~V}\). The dynamic resistance is
1 \(500 \Omega\)
2 \(300 \Omega\)
3 \(150 \Omega\)
4 \(250 \Omega\)
Explanation:
B Given that, Change in current \(\Delta \mathrm{I}=1.2 \mathrm{~mA}\) Change in forward voltage \(\Delta \mathrm{V}=0.6 \mathrm{~V}\) \(\because\) Dynamic Resistance, \(\mathrm{r}_{\mathrm{d}}=\frac{\Delta \mathrm{V}}{\Delta \mathrm{I}}=\frac{0.6}{1.2 \times 10^{-3}}\) \(\mathrm{r}_{\mathrm{d}}=\frac{10^3}{2}=500 \Omega\) \(\mathrm{r}_{\mathrm{d}}=500 \Omega\)
TS EAMCET (Engg.)-2016
Semiconductor Electronics Material Devices and Simple Circuits
150841
A p-n junction is fabricated from a semiconductor with band gap of \(2.8 \mathrm{eV}\). What approximate wavelength it cannot detect? use \(h\) \(=\mathbf{6} \times 10^{-34} \mathrm{~m}^2 \mathrm{~kg} / \mathrm{s}\)
1 \(100 \mathrm{~nm}\)
2 \(200 \mathrm{~nm}\)
3 \(400 \mathrm{~nm}\)
4 \(600 \mathrm{~nm}\)
Explanation:
C Given that, Energy of Band gap \(=2.8 \mathrm{eV}=2.8 \times 1.6 \times 10^{-19} \mathrm{~V}\) \(\mathrm{h} =6 \times 10^{-34} \mathrm{~J}-\mathrm{s}\) \(\because \quad \mathrm{E} =\frac{\mathrm{hc}}{\lambda}\) \(\therefore \quad \lambda =\frac{\mathrm{hc}}{\mathrm{E}}=\frac{6 \times 10^{-34} \times 3 \times 10^8}{2.8 \times 1.6 \times 10^{-19}}\) \(=\frac{18 \times 10^{-7}}{2.8 \times 1.6}=4.017 \times 10^{-7}\) \(\lambda =401.7 \times 10^{-9}\) \(\lambda = 400 \mathrm{~nm}\)