Nuclear Fission (Moderator, Coolantant) Fusion, Nuclear Energy
NUCLEAR PHYSICS

148042 Energy released in the fission of a single ${ }_{92} \mathrm{U}^{235}$ nucleus is $200 \mathrm{MeV}$. The fission rate of a ${ }_{92} \mathrm{U}^{235}$ filled reactor operating at a power level of $5 \mathrm{~W}$ is

1 $1.56 \times 10^{-10} \mathrm{~s}^{-1}$
2 $1.56 \times 10^{11} \mathrm{~s}^{-1}$
3 $1.56 \times 10^{-18} \mathrm{~s}^{-1}$
4 $1.56 \times 10^{-17} \mathrm{~s}^{-1}$
NUCLEAR PHYSICS

148044 Complete the equation for the following fission process ${ }_{92} \mathbf{U}^{235}+{ }_{0} \mathbf{n}^{1} \rightarrow{ }_{38} \mathrm{Sr}^{90}+\ldots$.

1 ${ }_{54} \mathrm{Xe}^{143}+3{ }_{0} \mathrm{n}^{1}$
2 ${ }_{54} \mathrm{Xe}^{145}$
3 ${ }_{57} \mathrm{Xe}^{142}$
4 ${ }_{54} \mathrm{Xe}^{142}+{ }_{0} \mathrm{n}^{1}$
NUCLEAR PHYSICS

148045 In a fission reaction, ${ }_{92}^{236} \mathbf{U} \rightarrow{ }^{117} \mathbf{X}+{ }^{117} \mathbf{Y}+\mathbf{n}+\mathbf{n}$ the binding energy per nucleon of $X$ and $Y$ is 8.5 MeV whereas of ${ }^{236} \mathrm{U}$ is $7.6 \mathrm{MeV}$. The total energy liberated will be about

1 $2000 \mathrm{MeV}$
2 $200 \mathrm{MeV}$
3 $2 \mathrm{MeV}$
4 $1 \mathrm{KeV}$
NUCLEAR PHYSICS

148050 A certain mass of hydrogen is changed to helium by the process of fusion. The mass defect in fusion reaction is $0.02866 \mathrm{u}$. The energy liberated per $u$ is
(given $1 \mu=931 \mathrm{MeV}$ )

1 $2.67 \mathrm{MeV}$
2 $26.7 \mathrm{MeV}$
3 $6.675 \mathrm{MeV}$
4 $13.35 \mathrm{MeV}$
NUCLEAR PHYSICS

148053 In a nuclear reactor the number of $\mathrm{U}^{235}$ nuclei undergoing fissions per second is $4 \times 10^{20}$.If the energy released per fission is $250 \mathrm{MeV}$, the total energy released in 10 hours is $(1 \mathrm{eV}=1.6$ $\times 10^{-19} \mathrm{~J}$ )

1 $576 \times 10^{6} \mathrm{~J}$
2 $576 \times 10^{12} \mathrm{~J}$
3 $576 \times 10^{15} \mathrm{~J}$
4 $576 \times 10^{18} \mathrm{~J}$
NUCLEAR PHYSICS

148042 Energy released in the fission of a single ${ }_{92} \mathrm{U}^{235}$ nucleus is $200 \mathrm{MeV}$. The fission rate of a ${ }_{92} \mathrm{U}^{235}$ filled reactor operating at a power level of $5 \mathrm{~W}$ is

1 $1.56 \times 10^{-10} \mathrm{~s}^{-1}$
2 $1.56 \times 10^{11} \mathrm{~s}^{-1}$
3 $1.56 \times 10^{-18} \mathrm{~s}^{-1}$
4 $1.56 \times 10^{-17} \mathrm{~s}^{-1}$
NUCLEAR PHYSICS

148044 Complete the equation for the following fission process ${ }_{92} \mathbf{U}^{235}+{ }_{0} \mathbf{n}^{1} \rightarrow{ }_{38} \mathrm{Sr}^{90}+\ldots$.

1 ${ }_{54} \mathrm{Xe}^{143}+3{ }_{0} \mathrm{n}^{1}$
2 ${ }_{54} \mathrm{Xe}^{145}$
3 ${ }_{57} \mathrm{Xe}^{142}$
4 ${ }_{54} \mathrm{Xe}^{142}+{ }_{0} \mathrm{n}^{1}$
NUCLEAR PHYSICS

148045 In a fission reaction, ${ }_{92}^{236} \mathbf{U} \rightarrow{ }^{117} \mathbf{X}+{ }^{117} \mathbf{Y}+\mathbf{n}+\mathbf{n}$ the binding energy per nucleon of $X$ and $Y$ is 8.5 MeV whereas of ${ }^{236} \mathrm{U}$ is $7.6 \mathrm{MeV}$. The total energy liberated will be about

1 $2000 \mathrm{MeV}$
2 $200 \mathrm{MeV}$
3 $2 \mathrm{MeV}$
4 $1 \mathrm{KeV}$
NUCLEAR PHYSICS

148050 A certain mass of hydrogen is changed to helium by the process of fusion. The mass defect in fusion reaction is $0.02866 \mathrm{u}$. The energy liberated per $u$ is
(given $1 \mu=931 \mathrm{MeV}$ )

1 $2.67 \mathrm{MeV}$
2 $26.7 \mathrm{MeV}$
3 $6.675 \mathrm{MeV}$
4 $13.35 \mathrm{MeV}$
NUCLEAR PHYSICS

148053 In a nuclear reactor the number of $\mathrm{U}^{235}$ nuclei undergoing fissions per second is $4 \times 10^{20}$.If the energy released per fission is $250 \mathrm{MeV}$, the total energy released in 10 hours is $(1 \mathrm{eV}=1.6$ $\times 10^{-19} \mathrm{~J}$ )

1 $576 \times 10^{6} \mathrm{~J}$
2 $576 \times 10^{12} \mathrm{~J}$
3 $576 \times 10^{15} \mathrm{~J}$
4 $576 \times 10^{18} \mathrm{~J}$
NUCLEAR PHYSICS

148042 Energy released in the fission of a single ${ }_{92} \mathrm{U}^{235}$ nucleus is $200 \mathrm{MeV}$. The fission rate of a ${ }_{92} \mathrm{U}^{235}$ filled reactor operating at a power level of $5 \mathrm{~W}$ is

1 $1.56 \times 10^{-10} \mathrm{~s}^{-1}$
2 $1.56 \times 10^{11} \mathrm{~s}^{-1}$
3 $1.56 \times 10^{-18} \mathrm{~s}^{-1}$
4 $1.56 \times 10^{-17} \mathrm{~s}^{-1}$
NUCLEAR PHYSICS

148044 Complete the equation for the following fission process ${ }_{92} \mathbf{U}^{235}+{ }_{0} \mathbf{n}^{1} \rightarrow{ }_{38} \mathrm{Sr}^{90}+\ldots$.

1 ${ }_{54} \mathrm{Xe}^{143}+3{ }_{0} \mathrm{n}^{1}$
2 ${ }_{54} \mathrm{Xe}^{145}$
3 ${ }_{57} \mathrm{Xe}^{142}$
4 ${ }_{54} \mathrm{Xe}^{142}+{ }_{0} \mathrm{n}^{1}$
NUCLEAR PHYSICS

148045 In a fission reaction, ${ }_{92}^{236} \mathbf{U} \rightarrow{ }^{117} \mathbf{X}+{ }^{117} \mathbf{Y}+\mathbf{n}+\mathbf{n}$ the binding energy per nucleon of $X$ and $Y$ is 8.5 MeV whereas of ${ }^{236} \mathrm{U}$ is $7.6 \mathrm{MeV}$. The total energy liberated will be about

1 $2000 \mathrm{MeV}$
2 $200 \mathrm{MeV}$
3 $2 \mathrm{MeV}$
4 $1 \mathrm{KeV}$
NUCLEAR PHYSICS

148050 A certain mass of hydrogen is changed to helium by the process of fusion. The mass defect in fusion reaction is $0.02866 \mathrm{u}$. The energy liberated per $u$ is
(given $1 \mu=931 \mathrm{MeV}$ )

1 $2.67 \mathrm{MeV}$
2 $26.7 \mathrm{MeV}$
3 $6.675 \mathrm{MeV}$
4 $13.35 \mathrm{MeV}$
NUCLEAR PHYSICS

148053 In a nuclear reactor the number of $\mathrm{U}^{235}$ nuclei undergoing fissions per second is $4 \times 10^{20}$.If the energy released per fission is $250 \mathrm{MeV}$, the total energy released in 10 hours is $(1 \mathrm{eV}=1.6$ $\times 10^{-19} \mathrm{~J}$ )

1 $576 \times 10^{6} \mathrm{~J}$
2 $576 \times 10^{12} \mathrm{~J}$
3 $576 \times 10^{15} \mathrm{~J}$
4 $576 \times 10^{18} \mathrm{~J}$
NUCLEAR PHYSICS

148042 Energy released in the fission of a single ${ }_{92} \mathrm{U}^{235}$ nucleus is $200 \mathrm{MeV}$. The fission rate of a ${ }_{92} \mathrm{U}^{235}$ filled reactor operating at a power level of $5 \mathrm{~W}$ is

1 $1.56 \times 10^{-10} \mathrm{~s}^{-1}$
2 $1.56 \times 10^{11} \mathrm{~s}^{-1}$
3 $1.56 \times 10^{-18} \mathrm{~s}^{-1}$
4 $1.56 \times 10^{-17} \mathrm{~s}^{-1}$
NUCLEAR PHYSICS

148044 Complete the equation for the following fission process ${ }_{92} \mathbf{U}^{235}+{ }_{0} \mathbf{n}^{1} \rightarrow{ }_{38} \mathrm{Sr}^{90}+\ldots$.

1 ${ }_{54} \mathrm{Xe}^{143}+3{ }_{0} \mathrm{n}^{1}$
2 ${ }_{54} \mathrm{Xe}^{145}$
3 ${ }_{57} \mathrm{Xe}^{142}$
4 ${ }_{54} \mathrm{Xe}^{142}+{ }_{0} \mathrm{n}^{1}$
NUCLEAR PHYSICS

148045 In a fission reaction, ${ }_{92}^{236} \mathbf{U} \rightarrow{ }^{117} \mathbf{X}+{ }^{117} \mathbf{Y}+\mathbf{n}+\mathbf{n}$ the binding energy per nucleon of $X$ and $Y$ is 8.5 MeV whereas of ${ }^{236} \mathrm{U}$ is $7.6 \mathrm{MeV}$. The total energy liberated will be about

1 $2000 \mathrm{MeV}$
2 $200 \mathrm{MeV}$
3 $2 \mathrm{MeV}$
4 $1 \mathrm{KeV}$
NUCLEAR PHYSICS

148050 A certain mass of hydrogen is changed to helium by the process of fusion. The mass defect in fusion reaction is $0.02866 \mathrm{u}$. The energy liberated per $u$ is
(given $1 \mu=931 \mathrm{MeV}$ )

1 $2.67 \mathrm{MeV}$
2 $26.7 \mathrm{MeV}$
3 $6.675 \mathrm{MeV}$
4 $13.35 \mathrm{MeV}$
NUCLEAR PHYSICS

148053 In a nuclear reactor the number of $\mathrm{U}^{235}$ nuclei undergoing fissions per second is $4 \times 10^{20}$.If the energy released per fission is $250 \mathrm{MeV}$, the total energy released in 10 hours is $(1 \mathrm{eV}=1.6$ $\times 10^{-19} \mathrm{~J}$ )

1 $576 \times 10^{6} \mathrm{~J}$
2 $576 \times 10^{12} \mathrm{~J}$
3 $576 \times 10^{15} \mathrm{~J}$
4 $576 \times 10^{18} \mathrm{~J}$
NUCLEAR PHYSICS

148042 Energy released in the fission of a single ${ }_{92} \mathrm{U}^{235}$ nucleus is $200 \mathrm{MeV}$. The fission rate of a ${ }_{92} \mathrm{U}^{235}$ filled reactor operating at a power level of $5 \mathrm{~W}$ is

1 $1.56 \times 10^{-10} \mathrm{~s}^{-1}$
2 $1.56 \times 10^{11} \mathrm{~s}^{-1}$
3 $1.56 \times 10^{-18} \mathrm{~s}^{-1}$
4 $1.56 \times 10^{-17} \mathrm{~s}^{-1}$
NUCLEAR PHYSICS

148044 Complete the equation for the following fission process ${ }_{92} \mathbf{U}^{235}+{ }_{0} \mathbf{n}^{1} \rightarrow{ }_{38} \mathrm{Sr}^{90}+\ldots$.

1 ${ }_{54} \mathrm{Xe}^{143}+3{ }_{0} \mathrm{n}^{1}$
2 ${ }_{54} \mathrm{Xe}^{145}$
3 ${ }_{57} \mathrm{Xe}^{142}$
4 ${ }_{54} \mathrm{Xe}^{142}+{ }_{0} \mathrm{n}^{1}$
NUCLEAR PHYSICS

148045 In a fission reaction, ${ }_{92}^{236} \mathbf{U} \rightarrow{ }^{117} \mathbf{X}+{ }^{117} \mathbf{Y}+\mathbf{n}+\mathbf{n}$ the binding energy per nucleon of $X$ and $Y$ is 8.5 MeV whereas of ${ }^{236} \mathrm{U}$ is $7.6 \mathrm{MeV}$. The total energy liberated will be about

1 $2000 \mathrm{MeV}$
2 $200 \mathrm{MeV}$
3 $2 \mathrm{MeV}$
4 $1 \mathrm{KeV}$
NUCLEAR PHYSICS

148050 A certain mass of hydrogen is changed to helium by the process of fusion. The mass defect in fusion reaction is $0.02866 \mathrm{u}$. The energy liberated per $u$ is
(given $1 \mu=931 \mathrm{MeV}$ )

1 $2.67 \mathrm{MeV}$
2 $26.7 \mathrm{MeV}$
3 $6.675 \mathrm{MeV}$
4 $13.35 \mathrm{MeV}$
NUCLEAR PHYSICS

148053 In a nuclear reactor the number of $\mathrm{U}^{235}$ nuclei undergoing fissions per second is $4 \times 10^{20}$.If the energy released per fission is $250 \mathrm{MeV}$, the total energy released in 10 hours is $(1 \mathrm{eV}=1.6$ $\times 10^{-19} \mathrm{~J}$ )

1 $576 \times 10^{6} \mathrm{~J}$
2 $576 \times 10^{12} \mathrm{~J}$
3 $576 \times 10^{15} \mathrm{~J}$
4 $576 \times 10^{18} \mathrm{~J}$