Nuclear Fission (Moderator, Coolantant) Fusion, Nuclear Energy
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
NUCLEAR PHYSICS

148038 $\quad \mathrm{A} \mathrm{U}^{235}$ nuclear reactor generates energy at a rate of $3.70 \times 10^{7} \mathrm{~J} / \mathrm{s}$. Each fission liberates 185 $\mathrm{MeV}$ useful energy. If the reactor has to operate for $144 \times 10^{4} \mathrm{~s}$, then, the mass of the fuel needed is (Assume Avogadro's number $=6$ $\left.\times 10^{23} \mathrm{~mol}^{-1}, 1 \mathrm{eV}=1.6 \times 10^{-99} \mathrm{~J}\right)$

1 $70.5 \mathrm{~kg}$
2 $0.705 \mathrm{~kg}$
3 $13.1 \mathrm{~kg}$
4 $1.31 \mathrm{~kg}$
NUCLEAR PHYSICS

148039 A $\mathbf{U}^{235}$ atom undergoes fission by thermal neutrons according to the following reaction $\mathbf{U}^{235}+\mathbf{n} \rightarrow{ }_{54}^{140} \mathrm{Xe}+{ }_{38}^{94} \mathrm{Sr}+\mathbf{2 n}$
The Xenon undergoes four and Strontium undergoes two consecutive $\beta$ decays and six electrons are detected. What is the atomic number of the two decay products of Xenon and Strontium?

1 50,36
2 58,40
3 56,42
4 57,41
NUCLEAR PHYSICS

148040 The following fusion reaction takes place:
${ }_{1}^{2} \mathrm{H}+{ }_{2}^{2} \mathrm{H} \longrightarrow{ }_{2}^{3} \mathrm{He}+\mathrm{n}+3.27 \mathrm{MeV}$
If $2 \mathrm{~kg}$ of deuterium is subjected to above reaction, the energy released is used to light a $100 \mathrm{~W}$ lamp, how long will the lamp glow?

1 $2 \times 10^{6}$ years
2 $3 \times 10^{5}$ years
3 $5 \times 10^{4}$ years
4 $7 \times 10^{3}$ years
NUCLEAR PHYSICS

148041 Calculate the neutron separation energy from the following data
$\mathrm{m}\left({ }_{20}^{41} \mathrm{Ca}\right)=39.962591 \mathrm{u} ; \mathrm{m}\left({ }_{20}^{41} \mathrm{Ca}\right)=40.962278 \mathrm{u} \text {; }$
$m_{n}=1.00865,1 u=931.5 \mathrm{MeV} / \mathrm{C}^{2}$

1 $7.57 \mathrm{MeV}$
2 $8.36 \mathrm{MeV}$
3 $9.12 \mathrm{MeV}$
4 $9.56 \mathrm{MeV}$
NUCLEAR PHYSICS

148038 $\quad \mathrm{A} \mathrm{U}^{235}$ nuclear reactor generates energy at a rate of $3.70 \times 10^{7} \mathrm{~J} / \mathrm{s}$. Each fission liberates 185 $\mathrm{MeV}$ useful energy. If the reactor has to operate for $144 \times 10^{4} \mathrm{~s}$, then, the mass of the fuel needed is (Assume Avogadro's number $=6$ $\left.\times 10^{23} \mathrm{~mol}^{-1}, 1 \mathrm{eV}=1.6 \times 10^{-99} \mathrm{~J}\right)$

1 $70.5 \mathrm{~kg}$
2 $0.705 \mathrm{~kg}$
3 $13.1 \mathrm{~kg}$
4 $1.31 \mathrm{~kg}$
NUCLEAR PHYSICS

148039 A $\mathbf{U}^{235}$ atom undergoes fission by thermal neutrons according to the following reaction $\mathbf{U}^{235}+\mathbf{n} \rightarrow{ }_{54}^{140} \mathrm{Xe}+{ }_{38}^{94} \mathrm{Sr}+\mathbf{2 n}$
The Xenon undergoes four and Strontium undergoes two consecutive $\beta$ decays and six electrons are detected. What is the atomic number of the two decay products of Xenon and Strontium?

1 50,36
2 58,40
3 56,42
4 57,41
NUCLEAR PHYSICS

148040 The following fusion reaction takes place:
${ }_{1}^{2} \mathrm{H}+{ }_{2}^{2} \mathrm{H} \longrightarrow{ }_{2}^{3} \mathrm{He}+\mathrm{n}+3.27 \mathrm{MeV}$
If $2 \mathrm{~kg}$ of deuterium is subjected to above reaction, the energy released is used to light a $100 \mathrm{~W}$ lamp, how long will the lamp glow?

1 $2 \times 10^{6}$ years
2 $3 \times 10^{5}$ years
3 $5 \times 10^{4}$ years
4 $7 \times 10^{3}$ years
NUCLEAR PHYSICS

148041 Calculate the neutron separation energy from the following data
$\mathrm{m}\left({ }_{20}^{41} \mathrm{Ca}\right)=39.962591 \mathrm{u} ; \mathrm{m}\left({ }_{20}^{41} \mathrm{Ca}\right)=40.962278 \mathrm{u} \text {; }$
$m_{n}=1.00865,1 u=931.5 \mathrm{MeV} / \mathrm{C}^{2}$

1 $7.57 \mathrm{MeV}$
2 $8.36 \mathrm{MeV}$
3 $9.12 \mathrm{MeV}$
4 $9.56 \mathrm{MeV}$
NUCLEAR PHYSICS

148038 $\quad \mathrm{A} \mathrm{U}^{235}$ nuclear reactor generates energy at a rate of $3.70 \times 10^{7} \mathrm{~J} / \mathrm{s}$. Each fission liberates 185 $\mathrm{MeV}$ useful energy. If the reactor has to operate for $144 \times 10^{4} \mathrm{~s}$, then, the mass of the fuel needed is (Assume Avogadro's number $=6$ $\left.\times 10^{23} \mathrm{~mol}^{-1}, 1 \mathrm{eV}=1.6 \times 10^{-99} \mathrm{~J}\right)$

1 $70.5 \mathrm{~kg}$
2 $0.705 \mathrm{~kg}$
3 $13.1 \mathrm{~kg}$
4 $1.31 \mathrm{~kg}$
NUCLEAR PHYSICS

148039 A $\mathbf{U}^{235}$ atom undergoes fission by thermal neutrons according to the following reaction $\mathbf{U}^{235}+\mathbf{n} \rightarrow{ }_{54}^{140} \mathrm{Xe}+{ }_{38}^{94} \mathrm{Sr}+\mathbf{2 n}$
The Xenon undergoes four and Strontium undergoes two consecutive $\beta$ decays and six electrons are detected. What is the atomic number of the two decay products of Xenon and Strontium?

1 50,36
2 58,40
3 56,42
4 57,41
NUCLEAR PHYSICS

148040 The following fusion reaction takes place:
${ }_{1}^{2} \mathrm{H}+{ }_{2}^{2} \mathrm{H} \longrightarrow{ }_{2}^{3} \mathrm{He}+\mathrm{n}+3.27 \mathrm{MeV}$
If $2 \mathrm{~kg}$ of deuterium is subjected to above reaction, the energy released is used to light a $100 \mathrm{~W}$ lamp, how long will the lamp glow?

1 $2 \times 10^{6}$ years
2 $3 \times 10^{5}$ years
3 $5 \times 10^{4}$ years
4 $7 \times 10^{3}$ years
NUCLEAR PHYSICS

148041 Calculate the neutron separation energy from the following data
$\mathrm{m}\left({ }_{20}^{41} \mathrm{Ca}\right)=39.962591 \mathrm{u} ; \mathrm{m}\left({ }_{20}^{41} \mathrm{Ca}\right)=40.962278 \mathrm{u} \text {; }$
$m_{n}=1.00865,1 u=931.5 \mathrm{MeV} / \mathrm{C}^{2}$

1 $7.57 \mathrm{MeV}$
2 $8.36 \mathrm{MeV}$
3 $9.12 \mathrm{MeV}$
4 $9.56 \mathrm{MeV}$
NUCLEAR PHYSICS

148038 $\quad \mathrm{A} \mathrm{U}^{235}$ nuclear reactor generates energy at a rate of $3.70 \times 10^{7} \mathrm{~J} / \mathrm{s}$. Each fission liberates 185 $\mathrm{MeV}$ useful energy. If the reactor has to operate for $144 \times 10^{4} \mathrm{~s}$, then, the mass of the fuel needed is (Assume Avogadro's number $=6$ $\left.\times 10^{23} \mathrm{~mol}^{-1}, 1 \mathrm{eV}=1.6 \times 10^{-99} \mathrm{~J}\right)$

1 $70.5 \mathrm{~kg}$
2 $0.705 \mathrm{~kg}$
3 $13.1 \mathrm{~kg}$
4 $1.31 \mathrm{~kg}$
NUCLEAR PHYSICS

148039 A $\mathbf{U}^{235}$ atom undergoes fission by thermal neutrons according to the following reaction $\mathbf{U}^{235}+\mathbf{n} \rightarrow{ }_{54}^{140} \mathrm{Xe}+{ }_{38}^{94} \mathrm{Sr}+\mathbf{2 n}$
The Xenon undergoes four and Strontium undergoes two consecutive $\beta$ decays and six electrons are detected. What is the atomic number of the two decay products of Xenon and Strontium?

1 50,36
2 58,40
3 56,42
4 57,41
NUCLEAR PHYSICS

148040 The following fusion reaction takes place:
${ }_{1}^{2} \mathrm{H}+{ }_{2}^{2} \mathrm{H} \longrightarrow{ }_{2}^{3} \mathrm{He}+\mathrm{n}+3.27 \mathrm{MeV}$
If $2 \mathrm{~kg}$ of deuterium is subjected to above reaction, the energy released is used to light a $100 \mathrm{~W}$ lamp, how long will the lamp glow?

1 $2 \times 10^{6}$ years
2 $3 \times 10^{5}$ years
3 $5 \times 10^{4}$ years
4 $7 \times 10^{3}$ years
NUCLEAR PHYSICS

148041 Calculate the neutron separation energy from the following data
$\mathrm{m}\left({ }_{20}^{41} \mathrm{Ca}\right)=39.962591 \mathrm{u} ; \mathrm{m}\left({ }_{20}^{41} \mathrm{Ca}\right)=40.962278 \mathrm{u} \text {; }$
$m_{n}=1.00865,1 u=931.5 \mathrm{MeV} / \mathrm{C}^{2}$

1 $7.57 \mathrm{MeV}$
2 $8.36 \mathrm{MeV}$
3 $9.12 \mathrm{MeV}$
4 $9.56 \mathrm{MeV}$