148038 $\quad \mathrm{A} \mathrm{U}^{235}$ nuclear reactor generates energy at a rate of $3.70 \times 10^{7} \mathrm{~J} / \mathrm{s}$. Each fission liberates 185 $\mathrm{MeV}$ useful energy. If the reactor has to operate for $144 \times 10^{4} \mathrm{~s}$, then, the mass of the fuel needed is (Assume Avogadro's number $=6$ $\left.\times 10^{23} \mathrm{~mol}^{-1}, 1 \mathrm{eV}=1.6 \times 10^{-99} \mathrm{~J}\right)$
148039
A $\mathbf{U}^{235}$ atom undergoes fission by thermal neutrons according to the following reaction $\mathbf{U}^{235}+\mathbf{n} \rightarrow{ }_{54}^{140} \mathrm{Xe}+{ }_{38}^{94} \mathrm{Sr}+\mathbf{2 n}$
The Xenon undergoes four and Strontium undergoes two consecutive $\beta$ decays and six electrons are detected. What is the atomic number of the two decay products of Xenon and Strontium?
148040
The following fusion reaction takes place:
${ }_{1}^{2} \mathrm{H}+{ }_{2}^{2} \mathrm{H} \longrightarrow{ }_{2}^{3} \mathrm{He}+\mathrm{n}+3.27 \mathrm{MeV}$
If $2 \mathrm{~kg}$ of deuterium is subjected to above reaction, the energy released is used to light a $100 \mathrm{~W}$ lamp, how long will the lamp glow?
148038 $\quad \mathrm{A} \mathrm{U}^{235}$ nuclear reactor generates energy at a rate of $3.70 \times 10^{7} \mathrm{~J} / \mathrm{s}$. Each fission liberates 185 $\mathrm{MeV}$ useful energy. If the reactor has to operate for $144 \times 10^{4} \mathrm{~s}$, then, the mass of the fuel needed is (Assume Avogadro's number $=6$ $\left.\times 10^{23} \mathrm{~mol}^{-1}, 1 \mathrm{eV}=1.6 \times 10^{-99} \mathrm{~J}\right)$
148039
A $\mathbf{U}^{235}$ atom undergoes fission by thermal neutrons according to the following reaction $\mathbf{U}^{235}+\mathbf{n} \rightarrow{ }_{54}^{140} \mathrm{Xe}+{ }_{38}^{94} \mathrm{Sr}+\mathbf{2 n}$
The Xenon undergoes four and Strontium undergoes two consecutive $\beta$ decays and six electrons are detected. What is the atomic number of the two decay products of Xenon and Strontium?
148040
The following fusion reaction takes place:
${ }_{1}^{2} \mathrm{H}+{ }_{2}^{2} \mathrm{H} \longrightarrow{ }_{2}^{3} \mathrm{He}+\mathrm{n}+3.27 \mathrm{MeV}$
If $2 \mathrm{~kg}$ of deuterium is subjected to above reaction, the energy released is used to light a $100 \mathrm{~W}$ lamp, how long will the lamp glow?
148038 $\quad \mathrm{A} \mathrm{U}^{235}$ nuclear reactor generates energy at a rate of $3.70 \times 10^{7} \mathrm{~J} / \mathrm{s}$. Each fission liberates 185 $\mathrm{MeV}$ useful energy. If the reactor has to operate for $144 \times 10^{4} \mathrm{~s}$, then, the mass of the fuel needed is (Assume Avogadro's number $=6$ $\left.\times 10^{23} \mathrm{~mol}^{-1}, 1 \mathrm{eV}=1.6 \times 10^{-99} \mathrm{~J}\right)$
148039
A $\mathbf{U}^{235}$ atom undergoes fission by thermal neutrons according to the following reaction $\mathbf{U}^{235}+\mathbf{n} \rightarrow{ }_{54}^{140} \mathrm{Xe}+{ }_{38}^{94} \mathrm{Sr}+\mathbf{2 n}$
The Xenon undergoes four and Strontium undergoes two consecutive $\beta$ decays and six electrons are detected. What is the atomic number of the two decay products of Xenon and Strontium?
148040
The following fusion reaction takes place:
${ }_{1}^{2} \mathrm{H}+{ }_{2}^{2} \mathrm{H} \longrightarrow{ }_{2}^{3} \mathrm{He}+\mathrm{n}+3.27 \mathrm{MeV}$
If $2 \mathrm{~kg}$ of deuterium is subjected to above reaction, the energy released is used to light a $100 \mathrm{~W}$ lamp, how long will the lamp glow?
148038 $\quad \mathrm{A} \mathrm{U}^{235}$ nuclear reactor generates energy at a rate of $3.70 \times 10^{7} \mathrm{~J} / \mathrm{s}$. Each fission liberates 185 $\mathrm{MeV}$ useful energy. If the reactor has to operate for $144 \times 10^{4} \mathrm{~s}$, then, the mass of the fuel needed is (Assume Avogadro's number $=6$ $\left.\times 10^{23} \mathrm{~mol}^{-1}, 1 \mathrm{eV}=1.6 \times 10^{-99} \mathrm{~J}\right)$
148039
A $\mathbf{U}^{235}$ atom undergoes fission by thermal neutrons according to the following reaction $\mathbf{U}^{235}+\mathbf{n} \rightarrow{ }_{54}^{140} \mathrm{Xe}+{ }_{38}^{94} \mathrm{Sr}+\mathbf{2 n}$
The Xenon undergoes four and Strontium undergoes two consecutive $\beta$ decays and six electrons are detected. What is the atomic number of the two decay products of Xenon and Strontium?
148040
The following fusion reaction takes place:
${ }_{1}^{2} \mathrm{H}+{ }_{2}^{2} \mathrm{H} \longrightarrow{ }_{2}^{3} \mathrm{He}+\mathrm{n}+3.27 \mathrm{MeV}$
If $2 \mathrm{~kg}$ of deuterium is subjected to above reaction, the energy released is used to light a $100 \mathrm{~W}$ lamp, how long will the lamp glow?