Capacitance
Capacitance

165675 A parallel plate capacitor of capacitance $20 \mu \mathrm{F}$ is being charged by a voltage source whose potential is changing at the rate of $3 \mathrm{~V} / \mathrm{s}$. The conduction current through the connecting wires and the displacement current through the plates of the capacitor, would be, respectively.

1 $60 \mu \mathrm{A}, 60 \mu \mathrm{A}$
2 $60 \mu \mathrm{A}$, zero
3 zero, zero
4 zero, $60 \mu \mathrm{A}$
Capacitance

165676 A capacitor of capacitance $C$, is connected across an $\mathrm{AC}$ source of voltage $\mathrm{V}$, given by
$V=V_{0} \sin \omega t$
The displacement current between the plates of the capacitor, would then be given by

1 $\mathrm{I}_{0}=\mathrm{V}_{0} \omega \mathrm{C} \cos \omega \mathrm{t}$
2 $I_{d}=\frac{V_{0}}{\omega C} \cos \omega t$
3 $I_{d}=\frac{V_{0}}{\omega C} \sin \omega t$
4 $I_{d}=V_{0} \omega C \sin \omega t$
Capacitance

165677 The effective capacitance between $A$ and $B$ in the given figure is

1 $1.5 \mu \mathrm{F}$
2 $1 \mu \mathrm{F}$
3 $3 \mu \mathrm{F}$
4 $2 \mu \mathrm{F}$
5 $2.5 \mu \mathrm{F}$
Capacitance

165678 The capacitance of two concentrie spherical shells of radii $R_{\mathbf{1}}$ and $R_{\mathbf{2}}\left(R_{\mathbf{2}}>R_{\mathbf{1}}\right)$ is

1 $4 \pi \varepsilon_{0} R_{1}$
2 $4 \pi \varepsilon_{0} R_{2}$
3 $4 \pi \varepsilon_{\mathrm{o}} \frac{\mathrm{R}_{2}-\mathrm{R}_{1}}{\mathrm{R}_{1} \mathrm{R}_{2}}$
4 $4 \pi \varepsilon_{o} \frac{R_{2} R_{1}}{R_{2}-R_{1}}$
Capacitance

165675 A parallel plate capacitor of capacitance $20 \mu \mathrm{F}$ is being charged by a voltage source whose potential is changing at the rate of $3 \mathrm{~V} / \mathrm{s}$. The conduction current through the connecting wires and the displacement current through the plates of the capacitor, would be, respectively.

1 $60 \mu \mathrm{A}, 60 \mu \mathrm{A}$
2 $60 \mu \mathrm{A}$, zero
3 zero, zero
4 zero, $60 \mu \mathrm{A}$
Capacitance

165676 A capacitor of capacitance $C$, is connected across an $\mathrm{AC}$ source of voltage $\mathrm{V}$, given by
$V=V_{0} \sin \omega t$
The displacement current between the plates of the capacitor, would then be given by

1 $\mathrm{I}_{0}=\mathrm{V}_{0} \omega \mathrm{C} \cos \omega \mathrm{t}$
2 $I_{d}=\frac{V_{0}}{\omega C} \cos \omega t$
3 $I_{d}=\frac{V_{0}}{\omega C} \sin \omega t$
4 $I_{d}=V_{0} \omega C \sin \omega t$
Capacitance

165677 The effective capacitance between $A$ and $B$ in the given figure is

1 $1.5 \mu \mathrm{F}$
2 $1 \mu \mathrm{F}$
3 $3 \mu \mathrm{F}$
4 $2 \mu \mathrm{F}$
5 $2.5 \mu \mathrm{F}$
Capacitance

165678 The capacitance of two concentrie spherical shells of radii $R_{\mathbf{1}}$ and $R_{\mathbf{2}}\left(R_{\mathbf{2}}>R_{\mathbf{1}}\right)$ is

1 $4 \pi \varepsilon_{0} R_{1}$
2 $4 \pi \varepsilon_{0} R_{2}$
3 $4 \pi \varepsilon_{\mathrm{o}} \frac{\mathrm{R}_{2}-\mathrm{R}_{1}}{\mathrm{R}_{1} \mathrm{R}_{2}}$
4 $4 \pi \varepsilon_{o} \frac{R_{2} R_{1}}{R_{2}-R_{1}}$
Capacitance

165675 A parallel plate capacitor of capacitance $20 \mu \mathrm{F}$ is being charged by a voltage source whose potential is changing at the rate of $3 \mathrm{~V} / \mathrm{s}$. The conduction current through the connecting wires and the displacement current through the plates of the capacitor, would be, respectively.

1 $60 \mu \mathrm{A}, 60 \mu \mathrm{A}$
2 $60 \mu \mathrm{A}$, zero
3 zero, zero
4 zero, $60 \mu \mathrm{A}$
Capacitance

165676 A capacitor of capacitance $C$, is connected across an $\mathrm{AC}$ source of voltage $\mathrm{V}$, given by
$V=V_{0} \sin \omega t$
The displacement current between the plates of the capacitor, would then be given by

1 $\mathrm{I}_{0}=\mathrm{V}_{0} \omega \mathrm{C} \cos \omega \mathrm{t}$
2 $I_{d}=\frac{V_{0}}{\omega C} \cos \omega t$
3 $I_{d}=\frac{V_{0}}{\omega C} \sin \omega t$
4 $I_{d}=V_{0} \omega C \sin \omega t$
Capacitance

165677 The effective capacitance between $A$ and $B$ in the given figure is

1 $1.5 \mu \mathrm{F}$
2 $1 \mu \mathrm{F}$
3 $3 \mu \mathrm{F}$
4 $2 \mu \mathrm{F}$
5 $2.5 \mu \mathrm{F}$
Capacitance

165678 The capacitance of two concentrie spherical shells of radii $R_{\mathbf{1}}$ and $R_{\mathbf{2}}\left(R_{\mathbf{2}}>R_{\mathbf{1}}\right)$ is

1 $4 \pi \varepsilon_{0} R_{1}$
2 $4 \pi \varepsilon_{0} R_{2}$
3 $4 \pi \varepsilon_{\mathrm{o}} \frac{\mathrm{R}_{2}-\mathrm{R}_{1}}{\mathrm{R}_{1} \mathrm{R}_{2}}$
4 $4 \pi \varepsilon_{o} \frac{R_{2} R_{1}}{R_{2}-R_{1}}$
Capacitance

165675 A parallel plate capacitor of capacitance $20 \mu \mathrm{F}$ is being charged by a voltage source whose potential is changing at the rate of $3 \mathrm{~V} / \mathrm{s}$. The conduction current through the connecting wires and the displacement current through the plates of the capacitor, would be, respectively.

1 $60 \mu \mathrm{A}, 60 \mu \mathrm{A}$
2 $60 \mu \mathrm{A}$, zero
3 zero, zero
4 zero, $60 \mu \mathrm{A}$
Capacitance

165676 A capacitor of capacitance $C$, is connected across an $\mathrm{AC}$ source of voltage $\mathrm{V}$, given by
$V=V_{0} \sin \omega t$
The displacement current between the plates of the capacitor, would then be given by

1 $\mathrm{I}_{0}=\mathrm{V}_{0} \omega \mathrm{C} \cos \omega \mathrm{t}$
2 $I_{d}=\frac{V_{0}}{\omega C} \cos \omega t$
3 $I_{d}=\frac{V_{0}}{\omega C} \sin \omega t$
4 $I_{d}=V_{0} \omega C \sin \omega t$
Capacitance

165677 The effective capacitance between $A$ and $B$ in the given figure is

1 $1.5 \mu \mathrm{F}$
2 $1 \mu \mathrm{F}$
3 $3 \mu \mathrm{F}$
4 $2 \mu \mathrm{F}$
5 $2.5 \mu \mathrm{F}$
Capacitance

165678 The capacitance of two concentrie spherical shells of radii $R_{\mathbf{1}}$ and $R_{\mathbf{2}}\left(R_{\mathbf{2}}>R_{\mathbf{1}}\right)$ is

1 $4 \pi \varepsilon_{0} R_{1}$
2 $4 \pi \varepsilon_{0} R_{2}$
3 $4 \pi \varepsilon_{\mathrm{o}} \frac{\mathrm{R}_{2}-\mathrm{R}_{1}}{\mathrm{R}_{1} \mathrm{R}_{2}}$
4 $4 \pi \varepsilon_{o} \frac{R_{2} R_{1}}{R_{2}-R_{1}}$