Capacitance
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Capacitance

165610 Instantaneous displacement current of $1.0 \mathrm{~A}$ in the space between the parallel plates of $1 \mu \mathrm{F}$ capacitor can be established by changing potential difference of

1 $10^{-6} \mathrm{~V} / \mathrm{s}$
2 $10^{6} \mathrm{~V} / \mathrm{s}$
3 $10^{-8} \mathrm{~V} / \mathrm{s}$
4 $10^{8} \mathrm{~V} / \mathrm{s}$
Capacitance

165611 A capacitor of $10 \mu \mathrm{F}$ is connected to a $10 \mathrm{~V}$ cell. The maximum charge on the capacitor will be

1 $1 \mu \mathrm{C}$
2 $10 \mu \mathrm{C}$
3 $100 \mu \mathrm{C}$
4 $1000 \mu \mathrm{C}$
Capacitance

165612 Two capacitors $C_{1}$ and $C_{2}$ are charged to $120 \mathrm{~V}$ and $200 \mathrm{~V}$ respectively. When they are connected in parellel, it is found that potenial on each one of them is zero. Therefore,

1 $5 \mathrm{C}_{1}=3 \mathrm{C}_{2}$
2 $3 \mathrm{C}_{1}=5 \mathrm{C}_{2}$
3 $3 \mathrm{C}_{1}+5 \mathrm{C}_{2}=0$
4 $9 \mathrm{C}_{1}=4 \mathrm{C}_{2}$
Capacitance

165613 A capacitor of capacitance $5 \mu \mathrm{F}$ is connected as shown in the figure. The internal resistance of the cell is $0.5 \Omega$. The amount of charge on the capacitor plate is-

1 zero
2 $5 \mu \mathrm{C}$
3 $10 \mu \mathrm{C}$
4 $25 \mu \mathrm{C}$
Capacitance

165610 Instantaneous displacement current of $1.0 \mathrm{~A}$ in the space between the parallel plates of $1 \mu \mathrm{F}$ capacitor can be established by changing potential difference of

1 $10^{-6} \mathrm{~V} / \mathrm{s}$
2 $10^{6} \mathrm{~V} / \mathrm{s}$
3 $10^{-8} \mathrm{~V} / \mathrm{s}$
4 $10^{8} \mathrm{~V} / \mathrm{s}$
Capacitance

165611 A capacitor of $10 \mu \mathrm{F}$ is connected to a $10 \mathrm{~V}$ cell. The maximum charge on the capacitor will be

1 $1 \mu \mathrm{C}$
2 $10 \mu \mathrm{C}$
3 $100 \mu \mathrm{C}$
4 $1000 \mu \mathrm{C}$
Capacitance

165612 Two capacitors $C_{1}$ and $C_{2}$ are charged to $120 \mathrm{~V}$ and $200 \mathrm{~V}$ respectively. When they are connected in parellel, it is found that potenial on each one of them is zero. Therefore,

1 $5 \mathrm{C}_{1}=3 \mathrm{C}_{2}$
2 $3 \mathrm{C}_{1}=5 \mathrm{C}_{2}$
3 $3 \mathrm{C}_{1}+5 \mathrm{C}_{2}=0$
4 $9 \mathrm{C}_{1}=4 \mathrm{C}_{2}$
Capacitance

165613 A capacitor of capacitance $5 \mu \mathrm{F}$ is connected as shown in the figure. The internal resistance of the cell is $0.5 \Omega$. The amount of charge on the capacitor plate is-

1 zero
2 $5 \mu \mathrm{C}$
3 $10 \mu \mathrm{C}$
4 $25 \mu \mathrm{C}$
Capacitance

165610 Instantaneous displacement current of $1.0 \mathrm{~A}$ in the space between the parallel plates of $1 \mu \mathrm{F}$ capacitor can be established by changing potential difference of

1 $10^{-6} \mathrm{~V} / \mathrm{s}$
2 $10^{6} \mathrm{~V} / \mathrm{s}$
3 $10^{-8} \mathrm{~V} / \mathrm{s}$
4 $10^{8} \mathrm{~V} / \mathrm{s}$
Capacitance

165611 A capacitor of $10 \mu \mathrm{F}$ is connected to a $10 \mathrm{~V}$ cell. The maximum charge on the capacitor will be

1 $1 \mu \mathrm{C}$
2 $10 \mu \mathrm{C}$
3 $100 \mu \mathrm{C}$
4 $1000 \mu \mathrm{C}$
Capacitance

165612 Two capacitors $C_{1}$ and $C_{2}$ are charged to $120 \mathrm{~V}$ and $200 \mathrm{~V}$ respectively. When they are connected in parellel, it is found that potenial on each one of them is zero. Therefore,

1 $5 \mathrm{C}_{1}=3 \mathrm{C}_{2}$
2 $3 \mathrm{C}_{1}=5 \mathrm{C}_{2}$
3 $3 \mathrm{C}_{1}+5 \mathrm{C}_{2}=0$
4 $9 \mathrm{C}_{1}=4 \mathrm{C}_{2}$
Capacitance

165613 A capacitor of capacitance $5 \mu \mathrm{F}$ is connected as shown in the figure. The internal resistance of the cell is $0.5 \Omega$. The amount of charge on the capacitor plate is-

1 zero
2 $5 \mu \mathrm{C}$
3 $10 \mu \mathrm{C}$
4 $25 \mu \mathrm{C}$
Capacitance

165610 Instantaneous displacement current of $1.0 \mathrm{~A}$ in the space between the parallel plates of $1 \mu \mathrm{F}$ capacitor can be established by changing potential difference of

1 $10^{-6} \mathrm{~V} / \mathrm{s}$
2 $10^{6} \mathrm{~V} / \mathrm{s}$
3 $10^{-8} \mathrm{~V} / \mathrm{s}$
4 $10^{8} \mathrm{~V} / \mathrm{s}$
Capacitance

165611 A capacitor of $10 \mu \mathrm{F}$ is connected to a $10 \mathrm{~V}$ cell. The maximum charge on the capacitor will be

1 $1 \mu \mathrm{C}$
2 $10 \mu \mathrm{C}$
3 $100 \mu \mathrm{C}$
4 $1000 \mu \mathrm{C}$
Capacitance

165612 Two capacitors $C_{1}$ and $C_{2}$ are charged to $120 \mathrm{~V}$ and $200 \mathrm{~V}$ respectively. When they are connected in parellel, it is found that potenial on each one of them is zero. Therefore,

1 $5 \mathrm{C}_{1}=3 \mathrm{C}_{2}$
2 $3 \mathrm{C}_{1}=5 \mathrm{C}_{2}$
3 $3 \mathrm{C}_{1}+5 \mathrm{C}_{2}=0$
4 $9 \mathrm{C}_{1}=4 \mathrm{C}_{2}$
Capacitance

165613 A capacitor of capacitance $5 \mu \mathrm{F}$ is connected as shown in the figure. The internal resistance of the cell is $0.5 \Omega$. The amount of charge on the capacitor plate is-

1 zero
2 $5 \mu \mathrm{C}$
3 $10 \mu \mathrm{C}$
4 $25 \mu \mathrm{C}$