Capacitance
Capacitance

165605 Spherical capacitors has outer sphere of radius $5 \mathrm{~cm}$ and inner sphere of radius $2 \mathrm{~cm}$. when the inner sphere is earthed, its capacity is $C_{1}$ and when the outer sphere is earthed its capacity is $\mathrm{C}_{2}$. Then $\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}$ is

1 $\frac{5}{2}$
2 $\frac{2}{5}$
3 $\frac{7}{3}$
4 $\frac{3}{7}$
Capacitance

165606 27 small drops each having charge $q$ and radius $r$ coalesce to form big drop. How many times charge and capacitance will become?

1 3,27
2 27,3
3 27,27
4 3,3
Capacitance

165607 $\quad$ Figure below shows four plates each of area $A$ and separated from one another by a distance $d$. What is the capacitance between $P$ and $Q$ ?

1 $\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$
2 $\frac{2 \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$
3 $\frac{3 \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$
4 $\frac{4 \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$
5 Zero
Capacitance

165608 The capacitance of a spherical conductor with radius $1 \mathrm{~m}$ is

1 $9 \times 10^{9} \mathrm{~F}$
2 $1 \mu \mathrm{F}$
3 $1.1 \times 10^{-10} \mathrm{~F}$
4 $1 \times 10^{-6} \mathrm{~F}$
Capacitance

165609 In the figure, charge and the potential difference across the $4 \mu \mathrm{F}$ capacitor will be nearly

1 $600 \mu \mathrm{C}, 150 \mathrm{~V}$
2 $300 \mu \mathrm{C}, 75 \mathrm{~V}$
3 $800 \mu \mathrm{C}, 200 \mathrm{~V}$
4 $580 \mu \mathrm{C}, 145 \mathrm{~V}$
Capacitance

165605 Spherical capacitors has outer sphere of radius $5 \mathrm{~cm}$ and inner sphere of radius $2 \mathrm{~cm}$. when the inner sphere is earthed, its capacity is $C_{1}$ and when the outer sphere is earthed its capacity is $\mathrm{C}_{2}$. Then $\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}$ is

1 $\frac{5}{2}$
2 $\frac{2}{5}$
3 $\frac{7}{3}$
4 $\frac{3}{7}$
Capacitance

165606 27 small drops each having charge $q$ and radius $r$ coalesce to form big drop. How many times charge and capacitance will become?

1 3,27
2 27,3
3 27,27
4 3,3
Capacitance

165607 $\quad$ Figure below shows four plates each of area $A$ and separated from one another by a distance $d$. What is the capacitance between $P$ and $Q$ ?

1 $\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$
2 $\frac{2 \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$
3 $\frac{3 \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$
4 $\frac{4 \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$
5 Zero
Capacitance

165608 The capacitance of a spherical conductor with radius $1 \mathrm{~m}$ is

1 $9 \times 10^{9} \mathrm{~F}$
2 $1 \mu \mathrm{F}$
3 $1.1 \times 10^{-10} \mathrm{~F}$
4 $1 \times 10^{-6} \mathrm{~F}$
Capacitance

165609 In the figure, charge and the potential difference across the $4 \mu \mathrm{F}$ capacitor will be nearly

1 $600 \mu \mathrm{C}, 150 \mathrm{~V}$
2 $300 \mu \mathrm{C}, 75 \mathrm{~V}$
3 $800 \mu \mathrm{C}, 200 \mathrm{~V}$
4 $580 \mu \mathrm{C}, 145 \mathrm{~V}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Capacitance

165605 Spherical capacitors has outer sphere of radius $5 \mathrm{~cm}$ and inner sphere of radius $2 \mathrm{~cm}$. when the inner sphere is earthed, its capacity is $C_{1}$ and when the outer sphere is earthed its capacity is $\mathrm{C}_{2}$. Then $\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}$ is

1 $\frac{5}{2}$
2 $\frac{2}{5}$
3 $\frac{7}{3}$
4 $\frac{3}{7}$
Capacitance

165606 27 small drops each having charge $q$ and radius $r$ coalesce to form big drop. How many times charge and capacitance will become?

1 3,27
2 27,3
3 27,27
4 3,3
Capacitance

165607 $\quad$ Figure below shows four plates each of area $A$ and separated from one another by a distance $d$. What is the capacitance between $P$ and $Q$ ?

1 $\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$
2 $\frac{2 \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$
3 $\frac{3 \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$
4 $\frac{4 \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$
5 Zero
Capacitance

165608 The capacitance of a spherical conductor with radius $1 \mathrm{~m}$ is

1 $9 \times 10^{9} \mathrm{~F}$
2 $1 \mu \mathrm{F}$
3 $1.1 \times 10^{-10} \mathrm{~F}$
4 $1 \times 10^{-6} \mathrm{~F}$
Capacitance

165609 In the figure, charge and the potential difference across the $4 \mu \mathrm{F}$ capacitor will be nearly

1 $600 \mu \mathrm{C}, 150 \mathrm{~V}$
2 $300 \mu \mathrm{C}, 75 \mathrm{~V}$
3 $800 \mu \mathrm{C}, 200 \mathrm{~V}$
4 $580 \mu \mathrm{C}, 145 \mathrm{~V}$
Capacitance

165605 Spherical capacitors has outer sphere of radius $5 \mathrm{~cm}$ and inner sphere of radius $2 \mathrm{~cm}$. when the inner sphere is earthed, its capacity is $C_{1}$ and when the outer sphere is earthed its capacity is $\mathrm{C}_{2}$. Then $\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}$ is

1 $\frac{5}{2}$
2 $\frac{2}{5}$
3 $\frac{7}{3}$
4 $\frac{3}{7}$
Capacitance

165606 27 small drops each having charge $q$ and radius $r$ coalesce to form big drop. How many times charge and capacitance will become?

1 3,27
2 27,3
3 27,27
4 3,3
Capacitance

165607 $\quad$ Figure below shows four plates each of area $A$ and separated from one another by a distance $d$. What is the capacitance between $P$ and $Q$ ?

1 $\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$
2 $\frac{2 \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$
3 $\frac{3 \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$
4 $\frac{4 \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$
5 Zero
Capacitance

165608 The capacitance of a spherical conductor with radius $1 \mathrm{~m}$ is

1 $9 \times 10^{9} \mathrm{~F}$
2 $1 \mu \mathrm{F}$
3 $1.1 \times 10^{-10} \mathrm{~F}$
4 $1 \times 10^{-6} \mathrm{~F}$
Capacitance

165609 In the figure, charge and the potential difference across the $4 \mu \mathrm{F}$ capacitor will be nearly

1 $600 \mu \mathrm{C}, 150 \mathrm{~V}$
2 $300 \mu \mathrm{C}, 75 \mathrm{~V}$
3 $800 \mu \mathrm{C}, 200 \mathrm{~V}$
4 $580 \mu \mathrm{C}, 145 \mathrm{~V}$
Capacitance

165605 Spherical capacitors has outer sphere of radius $5 \mathrm{~cm}$ and inner sphere of radius $2 \mathrm{~cm}$. when the inner sphere is earthed, its capacity is $C_{1}$ and when the outer sphere is earthed its capacity is $\mathrm{C}_{2}$. Then $\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}$ is

1 $\frac{5}{2}$
2 $\frac{2}{5}$
3 $\frac{7}{3}$
4 $\frac{3}{7}$
Capacitance

165606 27 small drops each having charge $q$ and radius $r$ coalesce to form big drop. How many times charge and capacitance will become?

1 3,27
2 27,3
3 27,27
4 3,3
Capacitance

165607 $\quad$ Figure below shows four plates each of area $A$ and separated from one another by a distance $d$. What is the capacitance between $P$ and $Q$ ?

1 $\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$
2 $\frac{2 \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$
3 $\frac{3 \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$
4 $\frac{4 \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$
5 Zero
Capacitance

165608 The capacitance of a spherical conductor with radius $1 \mathrm{~m}$ is

1 $9 \times 10^{9} \mathrm{~F}$
2 $1 \mu \mathrm{F}$
3 $1.1 \times 10^{-10} \mathrm{~F}$
4 $1 \times 10^{-6} \mathrm{~F}$
Capacitance

165609 In the figure, charge and the potential difference across the $4 \mu \mathrm{F}$ capacitor will be nearly

1 $600 \mu \mathrm{C}, 150 \mathrm{~V}$
2 $300 \mu \mathrm{C}, 75 \mathrm{~V}$
3 $800 \mu \mathrm{C}, 200 \mathrm{~V}$
4 $580 \mu \mathrm{C}, 145 \mathrm{~V}$