Reflection of Waves Strings
WAVES

172402 A string fixed at both ends vibrates in 5 loops as shown in the figure. The total number of nodes and antinodes respectively are-

1 $6 \& 5$
2 $6 \& 10$
3 $2 \& 5$
4 $10 \& 5$
WAVES

172411 Two strings of the same material and same length are given equal tension. If they are vibrating with fundamental frequencies 1600 $\mathrm{Hz}$ and $900 \mathrm{~Hz}$, then the ratio of their respective diameters is

1 $16: 9$
2 $4: 3$
3 $81: 256$
4 $3: 4$
5 $9: 16$
WAVES

172412 A transverse wave is travelling on a string with velocity ' $V$ '. The extension in the string is ' $x$ '. If the string is extended by $50 \%$, the speed of the wave along the string will be nearly (Hooke's law is obeyed)

1 $(0.9) \mathrm{v}$
2 $(1.1) \mathrm{v}$
3 $(0.7) \mathrm{v}$
4 $(1.22) \mathrm{v}$
WAVES

172413 The fundamental frequency of a wire stretched by $2 \mathrm{~kg} \mathrm{wt}$. is $100 \mathrm{~Hz}$. The weight required to produce its octave will be

1 $12 \mathrm{~kg} \mathrm{wt}$
2 $16 \mathrm{~kg} \mathrm{wt}$
3 $4 \mathrm{~kg} \mathrm{wt}$
4 $8 \mathrm{~kg} \mathrm{wt}$
WAVES

172414 A string of mass $0.1 \mathrm{~kg}$ is under a tension $1.6 \mathrm{~N}$. The length of the string is $1 \mathrm{~m}$. A transverse wave starts from one end of the string. The time taken by the wave to reach the other end is

1 $0.50 \mathrm{~s}$
2 $0.30 \mathrm{~s}$
3 $0.25 \mathrm{~s}$
4 $0.75 \mathrm{~s}$
WAVES

172402 A string fixed at both ends vibrates in 5 loops as shown in the figure. The total number of nodes and antinodes respectively are-

1 $6 \& 5$
2 $6 \& 10$
3 $2 \& 5$
4 $10 \& 5$
WAVES

172411 Two strings of the same material and same length are given equal tension. If they are vibrating with fundamental frequencies 1600 $\mathrm{Hz}$ and $900 \mathrm{~Hz}$, then the ratio of their respective diameters is

1 $16: 9$
2 $4: 3$
3 $81: 256$
4 $3: 4$
5 $9: 16$
WAVES

172412 A transverse wave is travelling on a string with velocity ' $V$ '. The extension in the string is ' $x$ '. If the string is extended by $50 \%$, the speed of the wave along the string will be nearly (Hooke's law is obeyed)

1 $(0.9) \mathrm{v}$
2 $(1.1) \mathrm{v}$
3 $(0.7) \mathrm{v}$
4 $(1.22) \mathrm{v}$
WAVES

172413 The fundamental frequency of a wire stretched by $2 \mathrm{~kg} \mathrm{wt}$. is $100 \mathrm{~Hz}$. The weight required to produce its octave will be

1 $12 \mathrm{~kg} \mathrm{wt}$
2 $16 \mathrm{~kg} \mathrm{wt}$
3 $4 \mathrm{~kg} \mathrm{wt}$
4 $8 \mathrm{~kg} \mathrm{wt}$
WAVES

172414 A string of mass $0.1 \mathrm{~kg}$ is under a tension $1.6 \mathrm{~N}$. The length of the string is $1 \mathrm{~m}$. A transverse wave starts from one end of the string. The time taken by the wave to reach the other end is

1 $0.50 \mathrm{~s}$
2 $0.30 \mathrm{~s}$
3 $0.25 \mathrm{~s}$
4 $0.75 \mathrm{~s}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
WAVES

172402 A string fixed at both ends vibrates in 5 loops as shown in the figure. The total number of nodes and antinodes respectively are-

1 $6 \& 5$
2 $6 \& 10$
3 $2 \& 5$
4 $10 \& 5$
WAVES

172411 Two strings of the same material and same length are given equal tension. If they are vibrating with fundamental frequencies 1600 $\mathrm{Hz}$ and $900 \mathrm{~Hz}$, then the ratio of their respective diameters is

1 $16: 9$
2 $4: 3$
3 $81: 256$
4 $3: 4$
5 $9: 16$
WAVES

172412 A transverse wave is travelling on a string with velocity ' $V$ '. The extension in the string is ' $x$ '. If the string is extended by $50 \%$, the speed of the wave along the string will be nearly (Hooke's law is obeyed)

1 $(0.9) \mathrm{v}$
2 $(1.1) \mathrm{v}$
3 $(0.7) \mathrm{v}$
4 $(1.22) \mathrm{v}$
WAVES

172413 The fundamental frequency of a wire stretched by $2 \mathrm{~kg} \mathrm{wt}$. is $100 \mathrm{~Hz}$. The weight required to produce its octave will be

1 $12 \mathrm{~kg} \mathrm{wt}$
2 $16 \mathrm{~kg} \mathrm{wt}$
3 $4 \mathrm{~kg} \mathrm{wt}$
4 $8 \mathrm{~kg} \mathrm{wt}$
WAVES

172414 A string of mass $0.1 \mathrm{~kg}$ is under a tension $1.6 \mathrm{~N}$. The length of the string is $1 \mathrm{~m}$. A transverse wave starts from one end of the string. The time taken by the wave to reach the other end is

1 $0.50 \mathrm{~s}$
2 $0.30 \mathrm{~s}$
3 $0.25 \mathrm{~s}$
4 $0.75 \mathrm{~s}$
WAVES

172402 A string fixed at both ends vibrates in 5 loops as shown in the figure. The total number of nodes and antinodes respectively are-

1 $6 \& 5$
2 $6 \& 10$
3 $2 \& 5$
4 $10 \& 5$
WAVES

172411 Two strings of the same material and same length are given equal tension. If they are vibrating with fundamental frequencies 1600 $\mathrm{Hz}$ and $900 \mathrm{~Hz}$, then the ratio of their respective diameters is

1 $16: 9$
2 $4: 3$
3 $81: 256$
4 $3: 4$
5 $9: 16$
WAVES

172412 A transverse wave is travelling on a string with velocity ' $V$ '. The extension in the string is ' $x$ '. If the string is extended by $50 \%$, the speed of the wave along the string will be nearly (Hooke's law is obeyed)

1 $(0.9) \mathrm{v}$
2 $(1.1) \mathrm{v}$
3 $(0.7) \mathrm{v}$
4 $(1.22) \mathrm{v}$
WAVES

172413 The fundamental frequency of a wire stretched by $2 \mathrm{~kg} \mathrm{wt}$. is $100 \mathrm{~Hz}$. The weight required to produce its octave will be

1 $12 \mathrm{~kg} \mathrm{wt}$
2 $16 \mathrm{~kg} \mathrm{wt}$
3 $4 \mathrm{~kg} \mathrm{wt}$
4 $8 \mathrm{~kg} \mathrm{wt}$
WAVES

172414 A string of mass $0.1 \mathrm{~kg}$ is under a tension $1.6 \mathrm{~N}$. The length of the string is $1 \mathrm{~m}$. A transverse wave starts from one end of the string. The time taken by the wave to reach the other end is

1 $0.50 \mathrm{~s}$
2 $0.30 \mathrm{~s}$
3 $0.25 \mathrm{~s}$
4 $0.75 \mathrm{~s}$
WAVES

172402 A string fixed at both ends vibrates in 5 loops as shown in the figure. The total number of nodes and antinodes respectively are-

1 $6 \& 5$
2 $6 \& 10$
3 $2 \& 5$
4 $10 \& 5$
WAVES

172411 Two strings of the same material and same length are given equal tension. If they are vibrating with fundamental frequencies 1600 $\mathrm{Hz}$ and $900 \mathrm{~Hz}$, then the ratio of their respective diameters is

1 $16: 9$
2 $4: 3$
3 $81: 256$
4 $3: 4$
5 $9: 16$
WAVES

172412 A transverse wave is travelling on a string with velocity ' $V$ '. The extension in the string is ' $x$ '. If the string is extended by $50 \%$, the speed of the wave along the string will be nearly (Hooke's law is obeyed)

1 $(0.9) \mathrm{v}$
2 $(1.1) \mathrm{v}$
3 $(0.7) \mathrm{v}$
4 $(1.22) \mathrm{v}$
WAVES

172413 The fundamental frequency of a wire stretched by $2 \mathrm{~kg} \mathrm{wt}$. is $100 \mathrm{~Hz}$. The weight required to produce its octave will be

1 $12 \mathrm{~kg} \mathrm{wt}$
2 $16 \mathrm{~kg} \mathrm{wt}$
3 $4 \mathrm{~kg} \mathrm{wt}$
4 $8 \mathrm{~kg} \mathrm{wt}$
WAVES

172414 A string of mass $0.1 \mathrm{~kg}$ is under a tension $1.6 \mathrm{~N}$. The length of the string is $1 \mathrm{~m}$. A transverse wave starts from one end of the string. The time taken by the wave to reach the other end is

1 $0.50 \mathrm{~s}$
2 $0.30 \mathrm{~s}$
3 $0.25 \mathrm{~s}$
4 $0.75 \mathrm{~s}$