Wave and Wave characteristics
WAVES

172265 The equation of a simple harmonic wave is given by $y=6 \sin 2 \pi(2 t-0.1 x)$, where $x$ and $y$ are in $\mathrm{mm}$ and $\mathrm{t}$ is in seconds. The phase difference between two particles $2 \mathrm{~mm}$ apart at any instant is :

1 $18^{0}$
2 $36^{0}$
3 $54^{0}$
4 $72^{0}$
WAVES

172267 The equation of a transverse wave travelling along positive $x$ axis with amplitude $0.2 \mathrm{~m}$, velocity $360 \mathrm{~m} / \mathrm{sec}$ and wave-length $60 \mathrm{~m}$ can be written as :

1 $y=0.2 \sin \pi\left[6 t+\frac{x}{60}\right]$
2 $y=0.2 \sin \pi\left[6 t-\frac{x}{60}\right]$
3 $y=0.2 \sin 2 \pi\left[6 t-\frac{x}{60}\right]$
4 $y=0.2 \sin 2 \pi\left[6 t+\frac{x}{60}\right]$
WAVES

172270 A sine wave has an amplitude $A$ and wavelength $\lambda$. Let $V$ be the wave velocity and $v$ be the maximum velocity of a particle in the medium. Then

1 $\mathrm{V}=\mathrm{v}$ if $\lambda=\frac{3 \mathrm{~A}}{2 \pi}$
2 $\mathrm{V}=\mathrm{V}$ if $\mathrm{A}=2 \pi \lambda$
3 $\mathrm{V}=\mathrm{v}$ if $\mathrm{A}=\frac{\lambda}{2 \pi}$
4 $\mathrm{V}$ can not be equal to $\mathrm{V}$.
WAVES

172273 Equation of progressive wave is
$y=A \sin \left(10 \pi x+11 \pi t+\frac{\pi}{3}\right)$

1 its wavelength is 0.2 units
2 it is travelling in the positive $\mathrm{x}$-direction
3 wave velocity is 1.5 units
4 time period of SHM is $1 \mathrm{~s}$
WAVES

172265 The equation of a simple harmonic wave is given by $y=6 \sin 2 \pi(2 t-0.1 x)$, where $x$ and $y$ are in $\mathrm{mm}$ and $\mathrm{t}$ is in seconds. The phase difference between two particles $2 \mathrm{~mm}$ apart at any instant is :

1 $18^{0}$
2 $36^{0}$
3 $54^{0}$
4 $72^{0}$
WAVES

172267 The equation of a transverse wave travelling along positive $x$ axis with amplitude $0.2 \mathrm{~m}$, velocity $360 \mathrm{~m} / \mathrm{sec}$ and wave-length $60 \mathrm{~m}$ can be written as :

1 $y=0.2 \sin \pi\left[6 t+\frac{x}{60}\right]$
2 $y=0.2 \sin \pi\left[6 t-\frac{x}{60}\right]$
3 $y=0.2 \sin 2 \pi\left[6 t-\frac{x}{60}\right]$
4 $y=0.2 \sin 2 \pi\left[6 t+\frac{x}{60}\right]$
WAVES

172270 A sine wave has an amplitude $A$ and wavelength $\lambda$. Let $V$ be the wave velocity and $v$ be the maximum velocity of a particle in the medium. Then

1 $\mathrm{V}=\mathrm{v}$ if $\lambda=\frac{3 \mathrm{~A}}{2 \pi}$
2 $\mathrm{V}=\mathrm{V}$ if $\mathrm{A}=2 \pi \lambda$
3 $\mathrm{V}=\mathrm{v}$ if $\mathrm{A}=\frac{\lambda}{2 \pi}$
4 $\mathrm{V}$ can not be equal to $\mathrm{V}$.
WAVES

172273 Equation of progressive wave is
$y=A \sin \left(10 \pi x+11 \pi t+\frac{\pi}{3}\right)$

1 its wavelength is 0.2 units
2 it is travelling in the positive $\mathrm{x}$-direction
3 wave velocity is 1.5 units
4 time period of SHM is $1 \mathrm{~s}$
WAVES

172265 The equation of a simple harmonic wave is given by $y=6 \sin 2 \pi(2 t-0.1 x)$, where $x$ and $y$ are in $\mathrm{mm}$ and $\mathrm{t}$ is in seconds. The phase difference between two particles $2 \mathrm{~mm}$ apart at any instant is :

1 $18^{0}$
2 $36^{0}$
3 $54^{0}$
4 $72^{0}$
WAVES

172267 The equation of a transverse wave travelling along positive $x$ axis with amplitude $0.2 \mathrm{~m}$, velocity $360 \mathrm{~m} / \mathrm{sec}$ and wave-length $60 \mathrm{~m}$ can be written as :

1 $y=0.2 \sin \pi\left[6 t+\frac{x}{60}\right]$
2 $y=0.2 \sin \pi\left[6 t-\frac{x}{60}\right]$
3 $y=0.2 \sin 2 \pi\left[6 t-\frac{x}{60}\right]$
4 $y=0.2 \sin 2 \pi\left[6 t+\frac{x}{60}\right]$
WAVES

172270 A sine wave has an amplitude $A$ and wavelength $\lambda$. Let $V$ be the wave velocity and $v$ be the maximum velocity of a particle in the medium. Then

1 $\mathrm{V}=\mathrm{v}$ if $\lambda=\frac{3 \mathrm{~A}}{2 \pi}$
2 $\mathrm{V}=\mathrm{V}$ if $\mathrm{A}=2 \pi \lambda$
3 $\mathrm{V}=\mathrm{v}$ if $\mathrm{A}=\frac{\lambda}{2 \pi}$
4 $\mathrm{V}$ can not be equal to $\mathrm{V}$.
WAVES

172273 Equation of progressive wave is
$y=A \sin \left(10 \pi x+11 \pi t+\frac{\pi}{3}\right)$

1 its wavelength is 0.2 units
2 it is travelling in the positive $\mathrm{x}$-direction
3 wave velocity is 1.5 units
4 time period of SHM is $1 \mathrm{~s}$
WAVES

172265 The equation of a simple harmonic wave is given by $y=6 \sin 2 \pi(2 t-0.1 x)$, where $x$ and $y$ are in $\mathrm{mm}$ and $\mathrm{t}$ is in seconds. The phase difference between two particles $2 \mathrm{~mm}$ apart at any instant is :

1 $18^{0}$
2 $36^{0}$
3 $54^{0}$
4 $72^{0}$
WAVES

172267 The equation of a transverse wave travelling along positive $x$ axis with amplitude $0.2 \mathrm{~m}$, velocity $360 \mathrm{~m} / \mathrm{sec}$ and wave-length $60 \mathrm{~m}$ can be written as :

1 $y=0.2 \sin \pi\left[6 t+\frac{x}{60}\right]$
2 $y=0.2 \sin \pi\left[6 t-\frac{x}{60}\right]$
3 $y=0.2 \sin 2 \pi\left[6 t-\frac{x}{60}\right]$
4 $y=0.2 \sin 2 \pi\left[6 t+\frac{x}{60}\right]$
WAVES

172270 A sine wave has an amplitude $A$ and wavelength $\lambda$. Let $V$ be the wave velocity and $v$ be the maximum velocity of a particle in the medium. Then

1 $\mathrm{V}=\mathrm{v}$ if $\lambda=\frac{3 \mathrm{~A}}{2 \pi}$
2 $\mathrm{V}=\mathrm{V}$ if $\mathrm{A}=2 \pi \lambda$
3 $\mathrm{V}=\mathrm{v}$ if $\mathrm{A}=\frac{\lambda}{2 \pi}$
4 $\mathrm{V}$ can not be equal to $\mathrm{V}$.
WAVES

172273 Equation of progressive wave is
$y=A \sin \left(10 \pi x+11 \pi t+\frac{\pi}{3}\right)$

1 its wavelength is 0.2 units
2 it is travelling in the positive $\mathrm{x}$-direction
3 wave velocity is 1.5 units
4 time period of SHM is $1 \mathrm{~s}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here