Wave and Wave characteristics
WAVES

172274 $y=25 \cos (2 \pi t-\pi x)$ is the wave equation. Then the amplitude and frequency are respectively

1 100,25
2 200,25
3 25,100
4 $25,1.00$
WAVES

172278 The equation of a wave is $y=5$ $\sin \left(\frac{t}{0.04}-\frac{x}{4}\right)$ where $x$ is in $\mathrm{cm}$ and $t$ is in second. The maximum velocity of the wave particle will be

1 $1 \mathrm{~ms}^{-1}$
2 $2 \mathrm{~ms}^{-1}$
3 $1.5 \mathrm{~ms}^{-1}$
4 $1.25 \mathrm{~ms}^{-1}$
WAVES

172279 If a wave travelling in positive $x$-direction with $A=0.2 \mathrm{~m}$, velocity $=360 \mathrm{~m} / \mathrm{s}$ and $\lambda=60 \mathrm{~m}$, then correct expression for the wave is

1 $y=0.2 \sin \left[2 \pi\left(6 t+\frac{x}{60}\right)\right]$
2 $y=0.2 \sin \left[\pi\left(6 t+\frac{x}{60}\right)\right]$
3 $y=0.2 \sin \left[2 \pi\left(6 t-\frac{x}{60}\right)\right]$
4 $y=0.2 \sin \left[\pi\left(6 \mathrm{t}-\frac{\mathrm{x}}{60}\right)\right]$
WAVES

172280 The equation of progressive wave is $y=4 \sin \left(4 \pi t-0.04 x+\frac{\pi}{3}\right)$ where $x$ is in meter and $t$ is in second. The velocity of the wave is

1 $100 \pi \mathrm{m} / \mathrm{s}$
2 $50 \pi \mathrm{m} / \mathrm{s}$
3 $25 \pi \mathrm{m} / \mathrm{s}$
4 $\pi \mathrm{m} / \mathrm{s}$
WAVES

172281 A plane progressive wave is given by $y=2$ cos6. $284(330 t-x)$. What is the period of the wave?

1 $\frac{1}{330} \mathrm{~s}$
2 $2 \pi \times 330 \mathrm{~s}$
3 $(2 \pi \times 330)^{-1} \mathrm{~s}$
4 $\frac{6.284}{330} \mathrm{~s}$
WAVES

172274 $y=25 \cos (2 \pi t-\pi x)$ is the wave equation. Then the amplitude and frequency are respectively

1 100,25
2 200,25
3 25,100
4 $25,1.00$
WAVES

172278 The equation of a wave is $y=5$ $\sin \left(\frac{t}{0.04}-\frac{x}{4}\right)$ where $x$ is in $\mathrm{cm}$ and $t$ is in second. The maximum velocity of the wave particle will be

1 $1 \mathrm{~ms}^{-1}$
2 $2 \mathrm{~ms}^{-1}$
3 $1.5 \mathrm{~ms}^{-1}$
4 $1.25 \mathrm{~ms}^{-1}$
WAVES

172279 If a wave travelling in positive $x$-direction with $A=0.2 \mathrm{~m}$, velocity $=360 \mathrm{~m} / \mathrm{s}$ and $\lambda=60 \mathrm{~m}$, then correct expression for the wave is

1 $y=0.2 \sin \left[2 \pi\left(6 t+\frac{x}{60}\right)\right]$
2 $y=0.2 \sin \left[\pi\left(6 t+\frac{x}{60}\right)\right]$
3 $y=0.2 \sin \left[2 \pi\left(6 t-\frac{x}{60}\right)\right]$
4 $y=0.2 \sin \left[\pi\left(6 \mathrm{t}-\frac{\mathrm{x}}{60}\right)\right]$
WAVES

172280 The equation of progressive wave is $y=4 \sin \left(4 \pi t-0.04 x+\frac{\pi}{3}\right)$ where $x$ is in meter and $t$ is in second. The velocity of the wave is

1 $100 \pi \mathrm{m} / \mathrm{s}$
2 $50 \pi \mathrm{m} / \mathrm{s}$
3 $25 \pi \mathrm{m} / \mathrm{s}$
4 $\pi \mathrm{m} / \mathrm{s}$
WAVES

172281 A plane progressive wave is given by $y=2$ cos6. $284(330 t-x)$. What is the period of the wave?

1 $\frac{1}{330} \mathrm{~s}$
2 $2 \pi \times 330 \mathrm{~s}$
3 $(2 \pi \times 330)^{-1} \mathrm{~s}$
4 $\frac{6.284}{330} \mathrm{~s}$
WAVES

172274 $y=25 \cos (2 \pi t-\pi x)$ is the wave equation. Then the amplitude and frequency are respectively

1 100,25
2 200,25
3 25,100
4 $25,1.00$
WAVES

172278 The equation of a wave is $y=5$ $\sin \left(\frac{t}{0.04}-\frac{x}{4}\right)$ where $x$ is in $\mathrm{cm}$ and $t$ is in second. The maximum velocity of the wave particle will be

1 $1 \mathrm{~ms}^{-1}$
2 $2 \mathrm{~ms}^{-1}$
3 $1.5 \mathrm{~ms}^{-1}$
4 $1.25 \mathrm{~ms}^{-1}$
WAVES

172279 If a wave travelling in positive $x$-direction with $A=0.2 \mathrm{~m}$, velocity $=360 \mathrm{~m} / \mathrm{s}$ and $\lambda=60 \mathrm{~m}$, then correct expression for the wave is

1 $y=0.2 \sin \left[2 \pi\left(6 t+\frac{x}{60}\right)\right]$
2 $y=0.2 \sin \left[\pi\left(6 t+\frac{x}{60}\right)\right]$
3 $y=0.2 \sin \left[2 \pi\left(6 t-\frac{x}{60}\right)\right]$
4 $y=0.2 \sin \left[\pi\left(6 \mathrm{t}-\frac{\mathrm{x}}{60}\right)\right]$
WAVES

172280 The equation of progressive wave is $y=4 \sin \left(4 \pi t-0.04 x+\frac{\pi}{3}\right)$ where $x$ is in meter and $t$ is in second. The velocity of the wave is

1 $100 \pi \mathrm{m} / \mathrm{s}$
2 $50 \pi \mathrm{m} / \mathrm{s}$
3 $25 \pi \mathrm{m} / \mathrm{s}$
4 $\pi \mathrm{m} / \mathrm{s}$
WAVES

172281 A plane progressive wave is given by $y=2$ cos6. $284(330 t-x)$. What is the period of the wave?

1 $\frac{1}{330} \mathrm{~s}$
2 $2 \pi \times 330 \mathrm{~s}$
3 $(2 \pi \times 330)^{-1} \mathrm{~s}$
4 $\frac{6.284}{330} \mathrm{~s}$
WAVES

172274 $y=25 \cos (2 \pi t-\pi x)$ is the wave equation. Then the amplitude and frequency are respectively

1 100,25
2 200,25
3 25,100
4 $25,1.00$
WAVES

172278 The equation of a wave is $y=5$ $\sin \left(\frac{t}{0.04}-\frac{x}{4}\right)$ where $x$ is in $\mathrm{cm}$ and $t$ is in second. The maximum velocity of the wave particle will be

1 $1 \mathrm{~ms}^{-1}$
2 $2 \mathrm{~ms}^{-1}$
3 $1.5 \mathrm{~ms}^{-1}$
4 $1.25 \mathrm{~ms}^{-1}$
WAVES

172279 If a wave travelling in positive $x$-direction with $A=0.2 \mathrm{~m}$, velocity $=360 \mathrm{~m} / \mathrm{s}$ and $\lambda=60 \mathrm{~m}$, then correct expression for the wave is

1 $y=0.2 \sin \left[2 \pi\left(6 t+\frac{x}{60}\right)\right]$
2 $y=0.2 \sin \left[\pi\left(6 t+\frac{x}{60}\right)\right]$
3 $y=0.2 \sin \left[2 \pi\left(6 t-\frac{x}{60}\right)\right]$
4 $y=0.2 \sin \left[\pi\left(6 \mathrm{t}-\frac{\mathrm{x}}{60}\right)\right]$
WAVES

172280 The equation of progressive wave is $y=4 \sin \left(4 \pi t-0.04 x+\frac{\pi}{3}\right)$ where $x$ is in meter and $t$ is in second. The velocity of the wave is

1 $100 \pi \mathrm{m} / \mathrm{s}$
2 $50 \pi \mathrm{m} / \mathrm{s}$
3 $25 \pi \mathrm{m} / \mathrm{s}$
4 $\pi \mathrm{m} / \mathrm{s}$
WAVES

172281 A plane progressive wave is given by $y=2$ cos6. $284(330 t-x)$. What is the period of the wave?

1 $\frac{1}{330} \mathrm{~s}$
2 $2 \pi \times 330 \mathrm{~s}$
3 $(2 \pi \times 330)^{-1} \mathrm{~s}$
4 $\frac{6.284}{330} \mathrm{~s}$
WAVES

172274 $y=25 \cos (2 \pi t-\pi x)$ is the wave equation. Then the amplitude and frequency are respectively

1 100,25
2 200,25
3 25,100
4 $25,1.00$
WAVES

172278 The equation of a wave is $y=5$ $\sin \left(\frac{t}{0.04}-\frac{x}{4}\right)$ where $x$ is in $\mathrm{cm}$ and $t$ is in second. The maximum velocity of the wave particle will be

1 $1 \mathrm{~ms}^{-1}$
2 $2 \mathrm{~ms}^{-1}$
3 $1.5 \mathrm{~ms}^{-1}$
4 $1.25 \mathrm{~ms}^{-1}$
WAVES

172279 If a wave travelling in positive $x$-direction with $A=0.2 \mathrm{~m}$, velocity $=360 \mathrm{~m} / \mathrm{s}$ and $\lambda=60 \mathrm{~m}$, then correct expression for the wave is

1 $y=0.2 \sin \left[2 \pi\left(6 t+\frac{x}{60}\right)\right]$
2 $y=0.2 \sin \left[\pi\left(6 t+\frac{x}{60}\right)\right]$
3 $y=0.2 \sin \left[2 \pi\left(6 t-\frac{x}{60}\right)\right]$
4 $y=0.2 \sin \left[\pi\left(6 \mathrm{t}-\frac{\mathrm{x}}{60}\right)\right]$
WAVES

172280 The equation of progressive wave is $y=4 \sin \left(4 \pi t-0.04 x+\frac{\pi}{3}\right)$ where $x$ is in meter and $t$ is in second. The velocity of the wave is

1 $100 \pi \mathrm{m} / \mathrm{s}$
2 $50 \pi \mathrm{m} / \mathrm{s}$
3 $25 \pi \mathrm{m} / \mathrm{s}$
4 $\pi \mathrm{m} / \mathrm{s}$
WAVES

172281 A plane progressive wave is given by $y=2$ cos6. $284(330 t-x)$. What is the period of the wave?

1 $\frac{1}{330} \mathrm{~s}$
2 $2 \pi \times 330 \mathrm{~s}$
3 $(2 \pi \times 330)^{-1} \mathrm{~s}$
4 $\frac{6.284}{330} \mathrm{~s}$