Wave and Wave characteristics
WAVES

172235 A wave equation is $\mathrm{y}=0.1 \sin (100 \pi \mathrm{t}-\mathrm{kx})$ and wave velocity is $100 \mathrm{~m} / \mathrm{s}$, its wave number is equal to

1 $1 \mathrm{~m}^{-1}$
2 $2 \mathrm{~m}^{-1}$
3 $\pi \mathrm{m}^{-1}$
4 $2 \pi \mathrm{m}^{-1}$
WAVES

172236 The amplitude of a wave disturbance propagating in the positive $\mathrm{X}$-direction is given by $y=\frac{1}{2+x^{2}}$ at $t=0$ and $y=\frac{1}{\left[2+(x-1)^{2}\right]}$ at $t$ $=3 \mathrm{~s}$, where $x$ and $y$ are in meter. If the shape of the wave disturbance does not change during the propagation, the velocity of the wave is

1 $\frac{1}{2} \mathrm{~ms}^{-1}$
2 $\frac{1}{3} \mathrm{~ms}^{-1}$
3 $\frac{1}{4} \mathrm{~ms}^{-1}$
4 $\frac{1}{5} \mathrm{~ms}^{-1}$
WAVES

172237 A wave travelling along positive $x$-axis is given by $y=A \sin (\omega t-k x)$. If it is reflected from a rigid boundary such that $80 \%$ amplitude is reflected, then equation of reflected wave is

1 $\mathrm{y}=\mathrm{A} \sin (\omega \mathrm{t}+0.8 \mathrm{kx})$
2 $y=-0.8 \mathrm{~A} \sin (\omega \mathrm{t}+\mathrm{kx})$
3 $y=A \sin (\omega t+k x)$
4 $y=0.8 \mathrm{~A} \sin (\omega \mathrm{t}+\mathrm{kx})$
WAVES

172238 For the stationary wave,
$y=4 \sin \left(\frac{\pi x}{15}\right) \cos (96 \pi t)$, the distance between
a node and the next antinode is

1 7.5
2 15
3 22.5
4 30
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
WAVES

172235 A wave equation is $\mathrm{y}=0.1 \sin (100 \pi \mathrm{t}-\mathrm{kx})$ and wave velocity is $100 \mathrm{~m} / \mathrm{s}$, its wave number is equal to

1 $1 \mathrm{~m}^{-1}$
2 $2 \mathrm{~m}^{-1}$
3 $\pi \mathrm{m}^{-1}$
4 $2 \pi \mathrm{m}^{-1}$
WAVES

172236 The amplitude of a wave disturbance propagating in the positive $\mathrm{X}$-direction is given by $y=\frac{1}{2+x^{2}}$ at $t=0$ and $y=\frac{1}{\left[2+(x-1)^{2}\right]}$ at $t$ $=3 \mathrm{~s}$, where $x$ and $y$ are in meter. If the shape of the wave disturbance does not change during the propagation, the velocity of the wave is

1 $\frac{1}{2} \mathrm{~ms}^{-1}$
2 $\frac{1}{3} \mathrm{~ms}^{-1}$
3 $\frac{1}{4} \mathrm{~ms}^{-1}$
4 $\frac{1}{5} \mathrm{~ms}^{-1}$
WAVES

172237 A wave travelling along positive $x$-axis is given by $y=A \sin (\omega t-k x)$. If it is reflected from a rigid boundary such that $80 \%$ amplitude is reflected, then equation of reflected wave is

1 $\mathrm{y}=\mathrm{A} \sin (\omega \mathrm{t}+0.8 \mathrm{kx})$
2 $y=-0.8 \mathrm{~A} \sin (\omega \mathrm{t}+\mathrm{kx})$
3 $y=A \sin (\omega t+k x)$
4 $y=0.8 \mathrm{~A} \sin (\omega \mathrm{t}+\mathrm{kx})$
WAVES

172238 For the stationary wave,
$y=4 \sin \left(\frac{\pi x}{15}\right) \cos (96 \pi t)$, the distance between
a node and the next antinode is

1 7.5
2 15
3 22.5
4 30
WAVES

172235 A wave equation is $\mathrm{y}=0.1 \sin (100 \pi \mathrm{t}-\mathrm{kx})$ and wave velocity is $100 \mathrm{~m} / \mathrm{s}$, its wave number is equal to

1 $1 \mathrm{~m}^{-1}$
2 $2 \mathrm{~m}^{-1}$
3 $\pi \mathrm{m}^{-1}$
4 $2 \pi \mathrm{m}^{-1}$
WAVES

172236 The amplitude of a wave disturbance propagating in the positive $\mathrm{X}$-direction is given by $y=\frac{1}{2+x^{2}}$ at $t=0$ and $y=\frac{1}{\left[2+(x-1)^{2}\right]}$ at $t$ $=3 \mathrm{~s}$, where $x$ and $y$ are in meter. If the shape of the wave disturbance does not change during the propagation, the velocity of the wave is

1 $\frac{1}{2} \mathrm{~ms}^{-1}$
2 $\frac{1}{3} \mathrm{~ms}^{-1}$
3 $\frac{1}{4} \mathrm{~ms}^{-1}$
4 $\frac{1}{5} \mathrm{~ms}^{-1}$
WAVES

172237 A wave travelling along positive $x$-axis is given by $y=A \sin (\omega t-k x)$. If it is reflected from a rigid boundary such that $80 \%$ amplitude is reflected, then equation of reflected wave is

1 $\mathrm{y}=\mathrm{A} \sin (\omega \mathrm{t}+0.8 \mathrm{kx})$
2 $y=-0.8 \mathrm{~A} \sin (\omega \mathrm{t}+\mathrm{kx})$
3 $y=A \sin (\omega t+k x)$
4 $y=0.8 \mathrm{~A} \sin (\omega \mathrm{t}+\mathrm{kx})$
WAVES

172238 For the stationary wave,
$y=4 \sin \left(\frac{\pi x}{15}\right) \cos (96 \pi t)$, the distance between
a node and the next antinode is

1 7.5
2 15
3 22.5
4 30
WAVES

172235 A wave equation is $\mathrm{y}=0.1 \sin (100 \pi \mathrm{t}-\mathrm{kx})$ and wave velocity is $100 \mathrm{~m} / \mathrm{s}$, its wave number is equal to

1 $1 \mathrm{~m}^{-1}$
2 $2 \mathrm{~m}^{-1}$
3 $\pi \mathrm{m}^{-1}$
4 $2 \pi \mathrm{m}^{-1}$
WAVES

172236 The amplitude of a wave disturbance propagating in the positive $\mathrm{X}$-direction is given by $y=\frac{1}{2+x^{2}}$ at $t=0$ and $y=\frac{1}{\left[2+(x-1)^{2}\right]}$ at $t$ $=3 \mathrm{~s}$, where $x$ and $y$ are in meter. If the shape of the wave disturbance does not change during the propagation, the velocity of the wave is

1 $\frac{1}{2} \mathrm{~ms}^{-1}$
2 $\frac{1}{3} \mathrm{~ms}^{-1}$
3 $\frac{1}{4} \mathrm{~ms}^{-1}$
4 $\frac{1}{5} \mathrm{~ms}^{-1}$
WAVES

172237 A wave travelling along positive $x$-axis is given by $y=A \sin (\omega t-k x)$. If it is reflected from a rigid boundary such that $80 \%$ amplitude is reflected, then equation of reflected wave is

1 $\mathrm{y}=\mathrm{A} \sin (\omega \mathrm{t}+0.8 \mathrm{kx})$
2 $y=-0.8 \mathrm{~A} \sin (\omega \mathrm{t}+\mathrm{kx})$
3 $y=A \sin (\omega t+k x)$
4 $y=0.8 \mathrm{~A} \sin (\omega \mathrm{t}+\mathrm{kx})$
WAVES

172238 For the stationary wave,
$y=4 \sin \left(\frac{\pi x}{15}\right) \cos (96 \pi t)$, the distance between
a node and the next antinode is

1 7.5
2 15
3 22.5
4 30