Wave and Wave characteristics
WAVES

172229 If equation of transverse wave is $y=x_{0} \cos$ $2 \pi\left(n t-\frac{x}{\lambda}\right)$. Maximum velocity of particle is twice of wave velocity, if $\lambda$ is-

1 $\pi / 2 x_{0}$
2 $2 \pi x_{0}$
3 $\pi x$
4 $\pi x_{0}$
WAVES

172230 The equation of a SHM is given by $y=3$ $\sin \frac{\pi}{2}(50 t-x)$, where $x$ and $y$ are in metres and $t$ is in seconds, the maximum wave velocity is

1 $25 \mathrm{~m} / \mathrm{s}$
2 $30 \mathrm{~m} / \mathrm{s}$
3 $50 \mathrm{~m} / \mathrm{s}$
4 $30 \mathrm{~m} / \mathrm{s}$
WAVES

172232 A simple harmonic progressive wave is represented by the equation $y=8 \sin$ $2 \pi(0.1 x-2 t)$ where $x$ and $y$ are in $\mathrm{cm}$ and $t$ is in second. At any instant the phase difference between two particles separated by $2.0 \mathrm{~cm}$ in the $x$-direction is

1 $18^{\circ}$
2 $36^{\circ}$
3 $54^{\circ}$
4 $72^{\circ}$
WAVES

172233 A sinusoidal wave travelling in the positive direction on stretched string has amplitude 20 $\mathrm{cm}$, wavelength $1 \mathrm{~m}$ and wave velocity $5 \mathrm{~m} / \mathrm{s}$. At $x=0$ and $t=0$, it is given that $y=0$ and $\frac{d y}{d t}<0$. Find the wave function $y(x, t)$.

1 $\mathrm{y}(\mathrm{x}, \mathrm{t})=(0.02 \mathrm{~m}) \sin \left[\left(2 \pi \mathrm{m}^{-1}\right) \mathrm{x}+\left(10 \pi \mathrm{s}^{-1}\right) \mathrm{t}\right] \mathrm{m}$
2 $\mathrm{y}(\mathrm{x}, \mathrm{t})=(0.02 \mathrm{~m}) \cos \left[\left(10 \pi \mathrm{s}^{-1}\right) \mathrm{t}+\left(2 \pi \mathrm{s}^{-1}\right) \times\right] \mathrm{m}$
3 $\mathrm{y}(\mathrm{x}, \mathrm{t})=(0.02 \mathrm{~m}) \sin \left[\left(2 \pi \mathrm{m}^{-1}\right) \mathrm{x}-\left(10 \pi \mathrm{s}^{-1}\right) \mathrm{t}\right] \mathrm{m}$
4 $\mathrm{y}(\mathrm{x}, \mathrm{t})=(0.02 \mathrm{~m}) \sin \left[\left(\pi \mathrm{m}^{-1}\right) \mathrm{x}+\left(5 \pi \mathrm{s}^{-1}\right) \mathrm{t}\right] \mathrm{m}$
WAVES

172234 The equation of the progressive wave is $y=a \sin 2 \pi\left(n t-\frac{x}{5}\right)$. The ratio of maximum particle velocity to wave velocity is

1 $\frac{\pi a}{5}$
2 $\frac{2 \pi \mathrm{a}}{5}$
3 $\frac{3 \pi \mathrm{a}}{5}$
4 $\frac{4 \pi \mathrm{a}}{5}$
WAVES

172229 If equation of transverse wave is $y=x_{0} \cos$ $2 \pi\left(n t-\frac{x}{\lambda}\right)$. Maximum velocity of particle is twice of wave velocity, if $\lambda$ is-

1 $\pi / 2 x_{0}$
2 $2 \pi x_{0}$
3 $\pi x$
4 $\pi x_{0}$
WAVES

172230 The equation of a SHM is given by $y=3$ $\sin \frac{\pi}{2}(50 t-x)$, where $x$ and $y$ are in metres and $t$ is in seconds, the maximum wave velocity is

1 $25 \mathrm{~m} / \mathrm{s}$
2 $30 \mathrm{~m} / \mathrm{s}$
3 $50 \mathrm{~m} / \mathrm{s}$
4 $30 \mathrm{~m} / \mathrm{s}$
WAVES

172232 A simple harmonic progressive wave is represented by the equation $y=8 \sin$ $2 \pi(0.1 x-2 t)$ where $x$ and $y$ are in $\mathrm{cm}$ and $t$ is in second. At any instant the phase difference between two particles separated by $2.0 \mathrm{~cm}$ in the $x$-direction is

1 $18^{\circ}$
2 $36^{\circ}$
3 $54^{\circ}$
4 $72^{\circ}$
WAVES

172233 A sinusoidal wave travelling in the positive direction on stretched string has amplitude 20 $\mathrm{cm}$, wavelength $1 \mathrm{~m}$ and wave velocity $5 \mathrm{~m} / \mathrm{s}$. At $x=0$ and $t=0$, it is given that $y=0$ and $\frac{d y}{d t}<0$. Find the wave function $y(x, t)$.

1 $\mathrm{y}(\mathrm{x}, \mathrm{t})=(0.02 \mathrm{~m}) \sin \left[\left(2 \pi \mathrm{m}^{-1}\right) \mathrm{x}+\left(10 \pi \mathrm{s}^{-1}\right) \mathrm{t}\right] \mathrm{m}$
2 $\mathrm{y}(\mathrm{x}, \mathrm{t})=(0.02 \mathrm{~m}) \cos \left[\left(10 \pi \mathrm{s}^{-1}\right) \mathrm{t}+\left(2 \pi \mathrm{s}^{-1}\right) \times\right] \mathrm{m}$
3 $\mathrm{y}(\mathrm{x}, \mathrm{t})=(0.02 \mathrm{~m}) \sin \left[\left(2 \pi \mathrm{m}^{-1}\right) \mathrm{x}-\left(10 \pi \mathrm{s}^{-1}\right) \mathrm{t}\right] \mathrm{m}$
4 $\mathrm{y}(\mathrm{x}, \mathrm{t})=(0.02 \mathrm{~m}) \sin \left[\left(\pi \mathrm{m}^{-1}\right) \mathrm{x}+\left(5 \pi \mathrm{s}^{-1}\right) \mathrm{t}\right] \mathrm{m}$
WAVES

172234 The equation of the progressive wave is $y=a \sin 2 \pi\left(n t-\frac{x}{5}\right)$. The ratio of maximum particle velocity to wave velocity is

1 $\frac{\pi a}{5}$
2 $\frac{2 \pi \mathrm{a}}{5}$
3 $\frac{3 \pi \mathrm{a}}{5}$
4 $\frac{4 \pi \mathrm{a}}{5}$
WAVES

172229 If equation of transverse wave is $y=x_{0} \cos$ $2 \pi\left(n t-\frac{x}{\lambda}\right)$. Maximum velocity of particle is twice of wave velocity, if $\lambda$ is-

1 $\pi / 2 x_{0}$
2 $2 \pi x_{0}$
3 $\pi x$
4 $\pi x_{0}$
WAVES

172230 The equation of a SHM is given by $y=3$ $\sin \frac{\pi}{2}(50 t-x)$, where $x$ and $y$ are in metres and $t$ is in seconds, the maximum wave velocity is

1 $25 \mathrm{~m} / \mathrm{s}$
2 $30 \mathrm{~m} / \mathrm{s}$
3 $50 \mathrm{~m} / \mathrm{s}$
4 $30 \mathrm{~m} / \mathrm{s}$
WAVES

172232 A simple harmonic progressive wave is represented by the equation $y=8 \sin$ $2 \pi(0.1 x-2 t)$ where $x$ and $y$ are in $\mathrm{cm}$ and $t$ is in second. At any instant the phase difference between two particles separated by $2.0 \mathrm{~cm}$ in the $x$-direction is

1 $18^{\circ}$
2 $36^{\circ}$
3 $54^{\circ}$
4 $72^{\circ}$
WAVES

172233 A sinusoidal wave travelling in the positive direction on stretched string has amplitude 20 $\mathrm{cm}$, wavelength $1 \mathrm{~m}$ and wave velocity $5 \mathrm{~m} / \mathrm{s}$. At $x=0$ and $t=0$, it is given that $y=0$ and $\frac{d y}{d t}<0$. Find the wave function $y(x, t)$.

1 $\mathrm{y}(\mathrm{x}, \mathrm{t})=(0.02 \mathrm{~m}) \sin \left[\left(2 \pi \mathrm{m}^{-1}\right) \mathrm{x}+\left(10 \pi \mathrm{s}^{-1}\right) \mathrm{t}\right] \mathrm{m}$
2 $\mathrm{y}(\mathrm{x}, \mathrm{t})=(0.02 \mathrm{~m}) \cos \left[\left(10 \pi \mathrm{s}^{-1}\right) \mathrm{t}+\left(2 \pi \mathrm{s}^{-1}\right) \times\right] \mathrm{m}$
3 $\mathrm{y}(\mathrm{x}, \mathrm{t})=(0.02 \mathrm{~m}) \sin \left[\left(2 \pi \mathrm{m}^{-1}\right) \mathrm{x}-\left(10 \pi \mathrm{s}^{-1}\right) \mathrm{t}\right] \mathrm{m}$
4 $\mathrm{y}(\mathrm{x}, \mathrm{t})=(0.02 \mathrm{~m}) \sin \left[\left(\pi \mathrm{m}^{-1}\right) \mathrm{x}+\left(5 \pi \mathrm{s}^{-1}\right) \mathrm{t}\right] \mathrm{m}$
WAVES

172234 The equation of the progressive wave is $y=a \sin 2 \pi\left(n t-\frac{x}{5}\right)$. The ratio of maximum particle velocity to wave velocity is

1 $\frac{\pi a}{5}$
2 $\frac{2 \pi \mathrm{a}}{5}$
3 $\frac{3 \pi \mathrm{a}}{5}$
4 $\frac{4 \pi \mathrm{a}}{5}$
WAVES

172229 If equation of transverse wave is $y=x_{0} \cos$ $2 \pi\left(n t-\frac{x}{\lambda}\right)$. Maximum velocity of particle is twice of wave velocity, if $\lambda$ is-

1 $\pi / 2 x_{0}$
2 $2 \pi x_{0}$
3 $\pi x$
4 $\pi x_{0}$
WAVES

172230 The equation of a SHM is given by $y=3$ $\sin \frac{\pi}{2}(50 t-x)$, where $x$ and $y$ are in metres and $t$ is in seconds, the maximum wave velocity is

1 $25 \mathrm{~m} / \mathrm{s}$
2 $30 \mathrm{~m} / \mathrm{s}$
3 $50 \mathrm{~m} / \mathrm{s}$
4 $30 \mathrm{~m} / \mathrm{s}$
WAVES

172232 A simple harmonic progressive wave is represented by the equation $y=8 \sin$ $2 \pi(0.1 x-2 t)$ where $x$ and $y$ are in $\mathrm{cm}$ and $t$ is in second. At any instant the phase difference between two particles separated by $2.0 \mathrm{~cm}$ in the $x$-direction is

1 $18^{\circ}$
2 $36^{\circ}$
3 $54^{\circ}$
4 $72^{\circ}$
WAVES

172233 A sinusoidal wave travelling in the positive direction on stretched string has amplitude 20 $\mathrm{cm}$, wavelength $1 \mathrm{~m}$ and wave velocity $5 \mathrm{~m} / \mathrm{s}$. At $x=0$ and $t=0$, it is given that $y=0$ and $\frac{d y}{d t}<0$. Find the wave function $y(x, t)$.

1 $\mathrm{y}(\mathrm{x}, \mathrm{t})=(0.02 \mathrm{~m}) \sin \left[\left(2 \pi \mathrm{m}^{-1}\right) \mathrm{x}+\left(10 \pi \mathrm{s}^{-1}\right) \mathrm{t}\right] \mathrm{m}$
2 $\mathrm{y}(\mathrm{x}, \mathrm{t})=(0.02 \mathrm{~m}) \cos \left[\left(10 \pi \mathrm{s}^{-1}\right) \mathrm{t}+\left(2 \pi \mathrm{s}^{-1}\right) \times\right] \mathrm{m}$
3 $\mathrm{y}(\mathrm{x}, \mathrm{t})=(0.02 \mathrm{~m}) \sin \left[\left(2 \pi \mathrm{m}^{-1}\right) \mathrm{x}-\left(10 \pi \mathrm{s}^{-1}\right) \mathrm{t}\right] \mathrm{m}$
4 $\mathrm{y}(\mathrm{x}, \mathrm{t})=(0.02 \mathrm{~m}) \sin \left[\left(\pi \mathrm{m}^{-1}\right) \mathrm{x}+\left(5 \pi \mathrm{s}^{-1}\right) \mathrm{t}\right] \mathrm{m}$
WAVES

172234 The equation of the progressive wave is $y=a \sin 2 \pi\left(n t-\frac{x}{5}\right)$. The ratio of maximum particle velocity to wave velocity is

1 $\frac{\pi a}{5}$
2 $\frac{2 \pi \mathrm{a}}{5}$
3 $\frac{3 \pi \mathrm{a}}{5}$
4 $\frac{4 \pi \mathrm{a}}{5}$
WAVES

172229 If equation of transverse wave is $y=x_{0} \cos$ $2 \pi\left(n t-\frac{x}{\lambda}\right)$. Maximum velocity of particle is twice of wave velocity, if $\lambda$ is-

1 $\pi / 2 x_{0}$
2 $2 \pi x_{0}$
3 $\pi x$
4 $\pi x_{0}$
WAVES

172230 The equation of a SHM is given by $y=3$ $\sin \frac{\pi}{2}(50 t-x)$, where $x$ and $y$ are in metres and $t$ is in seconds, the maximum wave velocity is

1 $25 \mathrm{~m} / \mathrm{s}$
2 $30 \mathrm{~m} / \mathrm{s}$
3 $50 \mathrm{~m} / \mathrm{s}$
4 $30 \mathrm{~m} / \mathrm{s}$
WAVES

172232 A simple harmonic progressive wave is represented by the equation $y=8 \sin$ $2 \pi(0.1 x-2 t)$ where $x$ and $y$ are in $\mathrm{cm}$ and $t$ is in second. At any instant the phase difference between two particles separated by $2.0 \mathrm{~cm}$ in the $x$-direction is

1 $18^{\circ}$
2 $36^{\circ}$
3 $54^{\circ}$
4 $72^{\circ}$
WAVES

172233 A sinusoidal wave travelling in the positive direction on stretched string has amplitude 20 $\mathrm{cm}$, wavelength $1 \mathrm{~m}$ and wave velocity $5 \mathrm{~m} / \mathrm{s}$. At $x=0$ and $t=0$, it is given that $y=0$ and $\frac{d y}{d t}<0$. Find the wave function $y(x, t)$.

1 $\mathrm{y}(\mathrm{x}, \mathrm{t})=(0.02 \mathrm{~m}) \sin \left[\left(2 \pi \mathrm{m}^{-1}\right) \mathrm{x}+\left(10 \pi \mathrm{s}^{-1}\right) \mathrm{t}\right] \mathrm{m}$
2 $\mathrm{y}(\mathrm{x}, \mathrm{t})=(0.02 \mathrm{~m}) \cos \left[\left(10 \pi \mathrm{s}^{-1}\right) \mathrm{t}+\left(2 \pi \mathrm{s}^{-1}\right) \times\right] \mathrm{m}$
3 $\mathrm{y}(\mathrm{x}, \mathrm{t})=(0.02 \mathrm{~m}) \sin \left[\left(2 \pi \mathrm{m}^{-1}\right) \mathrm{x}-\left(10 \pi \mathrm{s}^{-1}\right) \mathrm{t}\right] \mathrm{m}$
4 $\mathrm{y}(\mathrm{x}, \mathrm{t})=(0.02 \mathrm{~m}) \sin \left[\left(\pi \mathrm{m}^{-1}\right) \mathrm{x}+\left(5 \pi \mathrm{s}^{-1}\right) \mathrm{t}\right] \mathrm{m}$
WAVES

172234 The equation of the progressive wave is $y=a \sin 2 \pi\left(n t-\frac{x}{5}\right)$. The ratio of maximum particle velocity to wave velocity is

1 $\frac{\pi a}{5}$
2 $\frac{2 \pi \mathrm{a}}{5}$
3 $\frac{3 \pi \mathrm{a}}{5}$
4 $\frac{4 \pi \mathrm{a}}{5}$