Wave and Wave characteristics
WAVES

172221 The phase difference between two points is $\pi / 3$. If the frequency of wave is $50 \mathrm{~Hz}$, then what is the distance between two points? (Given, $v=330 \mathrm{~ms}^{1}$ )

1 $2.2 \mathrm{~m}$
2 $1.1 \mathrm{~m}$
3 $0.6 \mathrm{~m}$
4 $1.7 \mathrm{~m}$
WAVES

172224 An observer standing near the sea shore observes 54 waves per minute. If the wavelength of the water wave is $10 \mathrm{~m}$ then the velocity of water wave is:

1 $540 \mathrm{~ms}^{-1}$
2 $5.4 \mathrm{~ms}^{-1}$
3 $0.184 \mathrm{~ms}^{-1}$
4 $9 \mathrm{~ms}^{-1}$
5 $48.6 \mathrm{~ms}^{-1}$
WAVES

172225 The equation $y=A \sin 2 \pi\left(\frac{t}{T}-\frac{x}{\lambda}\right)$, where the symbols carry the usual meaning and $A, T$ and $\lambda$ are positive, represents a wave of:

1 amplitude $2 \mathrm{~A}$
2 period $T / \lambda$
3 speed $\mathrm{x} \lambda$
4 velocity in negative $\mathrm{x}$-direction
5 $\operatorname{speed}(\lambda / \mathrm{T})$
WAVES

172227 The equation of a travelling wave is given by $y=0.5 \sin (20 x-400 t)$
where $x$ and $y$ are in meter and $t$ is in second. The velocity of the wave is :

1 $10 \mathrm{~m} / \mathrm{s}$
2 $20 \mathrm{~m} / \mathrm{s}$
3 $200 \mathrm{~m} / \mathrm{s}$
4 $400 \mathrm{~m} / \mathrm{s}$
WAVES

172221 The phase difference between two points is $\pi / 3$. If the frequency of wave is $50 \mathrm{~Hz}$, then what is the distance between two points? (Given, $v=330 \mathrm{~ms}^{1}$ )

1 $2.2 \mathrm{~m}$
2 $1.1 \mathrm{~m}$
3 $0.6 \mathrm{~m}$
4 $1.7 \mathrm{~m}$
WAVES

172224 An observer standing near the sea shore observes 54 waves per minute. If the wavelength of the water wave is $10 \mathrm{~m}$ then the velocity of water wave is:

1 $540 \mathrm{~ms}^{-1}$
2 $5.4 \mathrm{~ms}^{-1}$
3 $0.184 \mathrm{~ms}^{-1}$
4 $9 \mathrm{~ms}^{-1}$
5 $48.6 \mathrm{~ms}^{-1}$
WAVES

172225 The equation $y=A \sin 2 \pi\left(\frac{t}{T}-\frac{x}{\lambda}\right)$, where the symbols carry the usual meaning and $A, T$ and $\lambda$ are positive, represents a wave of:

1 amplitude $2 \mathrm{~A}$
2 period $T / \lambda$
3 speed $\mathrm{x} \lambda$
4 velocity in negative $\mathrm{x}$-direction
5 $\operatorname{speed}(\lambda / \mathrm{T})$
WAVES

172227 The equation of a travelling wave is given by $y=0.5 \sin (20 x-400 t)$
where $x$ and $y$ are in meter and $t$ is in second. The velocity of the wave is :

1 $10 \mathrm{~m} / \mathrm{s}$
2 $20 \mathrm{~m} / \mathrm{s}$
3 $200 \mathrm{~m} / \mathrm{s}$
4 $400 \mathrm{~m} / \mathrm{s}$
WAVES

172221 The phase difference between two points is $\pi / 3$. If the frequency of wave is $50 \mathrm{~Hz}$, then what is the distance between two points? (Given, $v=330 \mathrm{~ms}^{1}$ )

1 $2.2 \mathrm{~m}$
2 $1.1 \mathrm{~m}$
3 $0.6 \mathrm{~m}$
4 $1.7 \mathrm{~m}$
WAVES

172224 An observer standing near the sea shore observes 54 waves per minute. If the wavelength of the water wave is $10 \mathrm{~m}$ then the velocity of water wave is:

1 $540 \mathrm{~ms}^{-1}$
2 $5.4 \mathrm{~ms}^{-1}$
3 $0.184 \mathrm{~ms}^{-1}$
4 $9 \mathrm{~ms}^{-1}$
5 $48.6 \mathrm{~ms}^{-1}$
WAVES

172225 The equation $y=A \sin 2 \pi\left(\frac{t}{T}-\frac{x}{\lambda}\right)$, where the symbols carry the usual meaning and $A, T$ and $\lambda$ are positive, represents a wave of:

1 amplitude $2 \mathrm{~A}$
2 period $T / \lambda$
3 speed $\mathrm{x} \lambda$
4 velocity in negative $\mathrm{x}$-direction
5 $\operatorname{speed}(\lambda / \mathrm{T})$
WAVES

172227 The equation of a travelling wave is given by $y=0.5 \sin (20 x-400 t)$
where $x$ and $y$ are in meter and $t$ is in second. The velocity of the wave is :

1 $10 \mathrm{~m} / \mathrm{s}$
2 $20 \mathrm{~m} / \mathrm{s}$
3 $200 \mathrm{~m} / \mathrm{s}$
4 $400 \mathrm{~m} / \mathrm{s}$
WAVES

172221 The phase difference between two points is $\pi / 3$. If the frequency of wave is $50 \mathrm{~Hz}$, then what is the distance between two points? (Given, $v=330 \mathrm{~ms}^{1}$ )

1 $2.2 \mathrm{~m}$
2 $1.1 \mathrm{~m}$
3 $0.6 \mathrm{~m}$
4 $1.7 \mathrm{~m}$
WAVES

172224 An observer standing near the sea shore observes 54 waves per minute. If the wavelength of the water wave is $10 \mathrm{~m}$ then the velocity of water wave is:

1 $540 \mathrm{~ms}^{-1}$
2 $5.4 \mathrm{~ms}^{-1}$
3 $0.184 \mathrm{~ms}^{-1}$
4 $9 \mathrm{~ms}^{-1}$
5 $48.6 \mathrm{~ms}^{-1}$
WAVES

172225 The equation $y=A \sin 2 \pi\left(\frac{t}{T}-\frac{x}{\lambda}\right)$, where the symbols carry the usual meaning and $A, T$ and $\lambda$ are positive, represents a wave of:

1 amplitude $2 \mathrm{~A}$
2 period $T / \lambda$
3 speed $\mathrm{x} \lambda$
4 velocity in negative $\mathrm{x}$-direction
5 $\operatorname{speed}(\lambda / \mathrm{T})$
WAVES

172227 The equation of a travelling wave is given by $y=0.5 \sin (20 x-400 t)$
where $x$ and $y$ are in meter and $t$ is in second. The velocity of the wave is :

1 $10 \mathrm{~m} / \mathrm{s}$
2 $20 \mathrm{~m} / \mathrm{s}$
3 $200 \mathrm{~m} / \mathrm{s}$
4 $400 \mathrm{~m} / \mathrm{s}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here