Wave and Wave characteristics
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
WAVES

172176 The equation of wave motion is $y=6 \mathrm{sin}$ $\left[12 \pi t-0.02 \pi x+\frac{\pi}{2}\right]$, where $x$ is in $m$ and $t$ in
second. The velocity of the wave is

1 $400 \mathrm{~m} / \mathrm{s}$
2 $200 \mathrm{~m} / \mathrm{s}$
3 $600 \mathrm{~m} / \mathrm{s}$
4 $100 \mathrm{~m} / \mathrm{s}$
WAVES

172177 In a transverse progressive wave of amplitude ' $a$ ', the maximum particle velocity is six times its wave velocity. The wavelength of wave is

1 $6 \pi \mathrm{a}$
2 $3 \pi \mathrm{a}$
3 $\frac{\pi \mathrm{a}}{3}$
4 $\frac{\pi \mathrm{a}}{6}$
WAVES

172190 Match the following list I with List II.
| List I | | List II | |
| :--- | :--- | :--- | :--- |
| (A) | Transverse
wave | (i) | Vibrations parallel to the
direction of propagation |
| (B) | Longitudinal
wave | (ii) | Vibrations perpendicular
to the direction of
propagation |
| (C) | Beats | (iii) | Superposition of waves
travelling in the opposite
directions |
| (D) | Stationary
waves | (iv) | Superposition of waves
traveling in same
direction |
The correct answer is

1 (ii) (A) (i) (B) (iii) (C) (iv) (D)
2 (ii) (A) (i) (B) (iv) (C) (iii) (D)
3 (iii) (A) (iv) (B) (i) (C) (ii) (D)
4 (iv) (A) (i) (B) (ii) (C) (iii) (D)
WAVES

172191 $y_{1}=4 \sin (\omega t+k x), y_{2}=-4 \cos (\omega t+k x)$, the phase difference is

1 $\frac{\pi}{2}$
2 $\frac{3 \pi}{2}$
3 $\pi$
4 zero
WAVES

172176 The equation of wave motion is $y=6 \mathrm{sin}$ $\left[12 \pi t-0.02 \pi x+\frac{\pi}{2}\right]$, where $x$ is in $m$ and $t$ in
second. The velocity of the wave is

1 $400 \mathrm{~m} / \mathrm{s}$
2 $200 \mathrm{~m} / \mathrm{s}$
3 $600 \mathrm{~m} / \mathrm{s}$
4 $100 \mathrm{~m} / \mathrm{s}$
WAVES

172177 In a transverse progressive wave of amplitude ' $a$ ', the maximum particle velocity is six times its wave velocity. The wavelength of wave is

1 $6 \pi \mathrm{a}$
2 $3 \pi \mathrm{a}$
3 $\frac{\pi \mathrm{a}}{3}$
4 $\frac{\pi \mathrm{a}}{6}$
WAVES

172190 Match the following list I with List II.
| List I | | List II | |
| :--- | :--- | :--- | :--- |
| (A) | Transverse
wave | (i) | Vibrations parallel to the
direction of propagation |
| (B) | Longitudinal
wave | (ii) | Vibrations perpendicular
to the direction of
propagation |
| (C) | Beats | (iii) | Superposition of waves
travelling in the opposite
directions |
| (D) | Stationary
waves | (iv) | Superposition of waves
traveling in same
direction |
The correct answer is

1 (ii) (A) (i) (B) (iii) (C) (iv) (D)
2 (ii) (A) (i) (B) (iv) (C) (iii) (D)
3 (iii) (A) (iv) (B) (i) (C) (ii) (D)
4 (iv) (A) (i) (B) (ii) (C) (iii) (D)
WAVES

172191 $y_{1}=4 \sin (\omega t+k x), y_{2}=-4 \cos (\omega t+k x)$, the phase difference is

1 $\frac{\pi}{2}$
2 $\frac{3 \pi}{2}$
3 $\pi$
4 zero
WAVES

172176 The equation of wave motion is $y=6 \mathrm{sin}$ $\left[12 \pi t-0.02 \pi x+\frac{\pi}{2}\right]$, where $x$ is in $m$ and $t$ in
second. The velocity of the wave is

1 $400 \mathrm{~m} / \mathrm{s}$
2 $200 \mathrm{~m} / \mathrm{s}$
3 $600 \mathrm{~m} / \mathrm{s}$
4 $100 \mathrm{~m} / \mathrm{s}$
WAVES

172177 In a transverse progressive wave of amplitude ' $a$ ', the maximum particle velocity is six times its wave velocity. The wavelength of wave is

1 $6 \pi \mathrm{a}$
2 $3 \pi \mathrm{a}$
3 $\frac{\pi \mathrm{a}}{3}$
4 $\frac{\pi \mathrm{a}}{6}$
WAVES

172190 Match the following list I with List II.
| List I | | List II | |
| :--- | :--- | :--- | :--- |
| (A) | Transverse
wave | (i) | Vibrations parallel to the
direction of propagation |
| (B) | Longitudinal
wave | (ii) | Vibrations perpendicular
to the direction of
propagation |
| (C) | Beats | (iii) | Superposition of waves
travelling in the opposite
directions |
| (D) | Stationary
waves | (iv) | Superposition of waves
traveling in same
direction |
The correct answer is

1 (ii) (A) (i) (B) (iii) (C) (iv) (D)
2 (ii) (A) (i) (B) (iv) (C) (iii) (D)
3 (iii) (A) (iv) (B) (i) (C) (ii) (D)
4 (iv) (A) (i) (B) (ii) (C) (iii) (D)
WAVES

172191 $y_{1}=4 \sin (\omega t+k x), y_{2}=-4 \cos (\omega t+k x)$, the phase difference is

1 $\frac{\pi}{2}$
2 $\frac{3 \pi}{2}$
3 $\pi$
4 zero
WAVES

172176 The equation of wave motion is $y=6 \mathrm{sin}$ $\left[12 \pi t-0.02 \pi x+\frac{\pi}{2}\right]$, where $x$ is in $m$ and $t$ in
second. The velocity of the wave is

1 $400 \mathrm{~m} / \mathrm{s}$
2 $200 \mathrm{~m} / \mathrm{s}$
3 $600 \mathrm{~m} / \mathrm{s}$
4 $100 \mathrm{~m} / \mathrm{s}$
WAVES

172177 In a transverse progressive wave of amplitude ' $a$ ', the maximum particle velocity is six times its wave velocity. The wavelength of wave is

1 $6 \pi \mathrm{a}$
2 $3 \pi \mathrm{a}$
3 $\frac{\pi \mathrm{a}}{3}$
4 $\frac{\pi \mathrm{a}}{6}$
WAVES

172190 Match the following list I with List II.
| List I | | List II | |
| :--- | :--- | :--- | :--- |
| (A) | Transverse
wave | (i) | Vibrations parallel to the
direction of propagation |
| (B) | Longitudinal
wave | (ii) | Vibrations perpendicular
to the direction of
propagation |
| (C) | Beats | (iii) | Superposition of waves
travelling in the opposite
directions |
| (D) | Stationary
waves | (iv) | Superposition of waves
traveling in same
direction |
The correct answer is

1 (ii) (A) (i) (B) (iii) (C) (iv) (D)
2 (ii) (A) (i) (B) (iv) (C) (iii) (D)
3 (iii) (A) (iv) (B) (i) (C) (ii) (D)
4 (iv) (A) (i) (B) (ii) (C) (iii) (D)
WAVES

172191 $y_{1}=4 \sin (\omega t+k x), y_{2}=-4 \cos (\omega t+k x)$, the phase difference is

1 $\frac{\pi}{2}$
2 $\frac{3 \pi}{2}$
3 $\pi$
4 zero