Wave and Wave characteristics
WAVES

172171 A wave is represented by $x=0.4$ $\cos \left(8 t-\frac{y}{2}\right)$ where $x$ and $y$ are in meters and $t$ in secs. The speed of the wave is

1 $0.5 \mathrm{~m} \cdot \mathrm{s}^{-1}$
2 $8 \mathrm{~m} \cdot \mathrm{s}^{-1}$
3 $16 \mathrm{~m} \cdot \mathrm{s}^{-1}$
4 $0.1 \mathrm{~m} \cdot \mathrm{s}^{-1}$
WAVES

172172 The equation of the displacement of waves is $y$ (in $\mathrm{cm})=10(\sqrt{3} \sin 2 \pi \mathrm{t}+\cos 2 \pi \mathrm{t})$
The amplitude of the wave is.

1 $10 \mathrm{~cm}$
2 $17.3 \mathrm{~cm}$
3 $20 \mathrm{~cm}$
4 $40 \mathrm{~cm}$
WAVES

172173 A travelling wave in a medium is given by the equation $y=a \sin (\omega t-k x)$. The maximum acceleration of the particle in the medium is

1 $\mathrm{a} \omega$
2 $a \omega^{2}$
3 $\frac{\omega}{\mathrm{k}}$
4 $\frac{x}{t}$
5 $\mathrm{k} \omega$
WAVES

172175 A progressive wave of frequency $50 \mathrm{~Hz}$ is travelling with velocity $350 \mathrm{~m} / \mathrm{s}$ through a medium. The change in phase at a given time interval of $0.01 \mathrm{~s}$ is

1 $\frac{3 \pi}{2} \mathrm{rad}$
2 $\frac{\pi}{4} \mathrm{rad}$
3 $\pi \mathrm{rad}$
4 $\frac{\pi}{2} \mathrm{rad}$
WAVES

172171 A wave is represented by $x=0.4$ $\cos \left(8 t-\frac{y}{2}\right)$ where $x$ and $y$ are in meters and $t$ in secs. The speed of the wave is

1 $0.5 \mathrm{~m} \cdot \mathrm{s}^{-1}$
2 $8 \mathrm{~m} \cdot \mathrm{s}^{-1}$
3 $16 \mathrm{~m} \cdot \mathrm{s}^{-1}$
4 $0.1 \mathrm{~m} \cdot \mathrm{s}^{-1}$
WAVES

172172 The equation of the displacement of waves is $y$ (in $\mathrm{cm})=10(\sqrt{3} \sin 2 \pi \mathrm{t}+\cos 2 \pi \mathrm{t})$
The amplitude of the wave is.

1 $10 \mathrm{~cm}$
2 $17.3 \mathrm{~cm}$
3 $20 \mathrm{~cm}$
4 $40 \mathrm{~cm}$
WAVES

172173 A travelling wave in a medium is given by the equation $y=a \sin (\omega t-k x)$. The maximum acceleration of the particle in the medium is

1 $\mathrm{a} \omega$
2 $a \omega^{2}$
3 $\frac{\omega}{\mathrm{k}}$
4 $\frac{x}{t}$
5 $\mathrm{k} \omega$
WAVES

172175 A progressive wave of frequency $50 \mathrm{~Hz}$ is travelling with velocity $350 \mathrm{~m} / \mathrm{s}$ through a medium. The change in phase at a given time interval of $0.01 \mathrm{~s}$ is

1 $\frac{3 \pi}{2} \mathrm{rad}$
2 $\frac{\pi}{4} \mathrm{rad}$
3 $\pi \mathrm{rad}$
4 $\frac{\pi}{2} \mathrm{rad}$
WAVES

172171 A wave is represented by $x=0.4$ $\cos \left(8 t-\frac{y}{2}\right)$ where $x$ and $y$ are in meters and $t$ in secs. The speed of the wave is

1 $0.5 \mathrm{~m} \cdot \mathrm{s}^{-1}$
2 $8 \mathrm{~m} \cdot \mathrm{s}^{-1}$
3 $16 \mathrm{~m} \cdot \mathrm{s}^{-1}$
4 $0.1 \mathrm{~m} \cdot \mathrm{s}^{-1}$
WAVES

172172 The equation of the displacement of waves is $y$ (in $\mathrm{cm})=10(\sqrt{3} \sin 2 \pi \mathrm{t}+\cos 2 \pi \mathrm{t})$
The amplitude of the wave is.

1 $10 \mathrm{~cm}$
2 $17.3 \mathrm{~cm}$
3 $20 \mathrm{~cm}$
4 $40 \mathrm{~cm}$
WAVES

172173 A travelling wave in a medium is given by the equation $y=a \sin (\omega t-k x)$. The maximum acceleration of the particle in the medium is

1 $\mathrm{a} \omega$
2 $a \omega^{2}$
3 $\frac{\omega}{\mathrm{k}}$
4 $\frac{x}{t}$
5 $\mathrm{k} \omega$
WAVES

172175 A progressive wave of frequency $50 \mathrm{~Hz}$ is travelling with velocity $350 \mathrm{~m} / \mathrm{s}$ through a medium. The change in phase at a given time interval of $0.01 \mathrm{~s}$ is

1 $\frac{3 \pi}{2} \mathrm{rad}$
2 $\frac{\pi}{4} \mathrm{rad}$
3 $\pi \mathrm{rad}$
4 $\frac{\pi}{2} \mathrm{rad}$
WAVES

172171 A wave is represented by $x=0.4$ $\cos \left(8 t-\frac{y}{2}\right)$ where $x$ and $y$ are in meters and $t$ in secs. The speed of the wave is

1 $0.5 \mathrm{~m} \cdot \mathrm{s}^{-1}$
2 $8 \mathrm{~m} \cdot \mathrm{s}^{-1}$
3 $16 \mathrm{~m} \cdot \mathrm{s}^{-1}$
4 $0.1 \mathrm{~m} \cdot \mathrm{s}^{-1}$
WAVES

172172 The equation of the displacement of waves is $y$ (in $\mathrm{cm})=10(\sqrt{3} \sin 2 \pi \mathrm{t}+\cos 2 \pi \mathrm{t})$
The amplitude of the wave is.

1 $10 \mathrm{~cm}$
2 $17.3 \mathrm{~cm}$
3 $20 \mathrm{~cm}$
4 $40 \mathrm{~cm}$
WAVES

172173 A travelling wave in a medium is given by the equation $y=a \sin (\omega t-k x)$. The maximum acceleration of the particle in the medium is

1 $\mathrm{a} \omega$
2 $a \omega^{2}$
3 $\frac{\omega}{\mathrm{k}}$
4 $\frac{x}{t}$
5 $\mathrm{k} \omega$
WAVES

172175 A progressive wave of frequency $50 \mathrm{~Hz}$ is travelling with velocity $350 \mathrm{~m} / \mathrm{s}$ through a medium. The change in phase at a given time interval of $0.01 \mathrm{~s}$ is

1 $\frac{3 \pi}{2} \mathrm{rad}$
2 $\frac{\pi}{4} \mathrm{rad}$
3 $\pi \mathrm{rad}$
4 $\frac{\pi}{2} \mathrm{rad}$