Specific heats of gases
Kinetic Theory of Gases

139343 Four mole of hydrogen, two mole of helium and one mole of water vapour form an ideal gas mixture. What is the molar specific heat at constant pressure of mixture?

1 $\frac{16}{7} \mathrm{R}$
2 $\frac{7}{16} \mathrm{R}$
3 $\mathrm{R}$
4 $\frac{23}{7} \mathrm{R}$
Kinetic Theory of Gases

139344 Which of the following relation is correct?

1 $\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{v}}}=\mathrm{R}$
2 $\mathrm{C}_{\mathrm{p}}+\mathrm{C}_{\mathrm{v}}=\mathrm{R}$
3 $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\mathrm{R}$
4 None of these
Kinetic Theory of Gases

139345 In a isothermal process, specific heat of gas is

1 zero
2 negative
3 infinity
4 None of these
Kinetic Theory of Gases

139346 Which of the following is incorrect?

1 $\mathrm{C}_{\mathrm{v}}=\frac{\mathrm{R}}{\gamma-1}$
2 $\mathrm{C}_{\mathrm{p}}=\frac{\gamma \mathrm{R}}{\gamma-1}$
3 $\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{v}}}=\gamma$
4 $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=2 \mathrm{R}$
Kinetic Theory of Gases

139343 Four mole of hydrogen, two mole of helium and one mole of water vapour form an ideal gas mixture. What is the molar specific heat at constant pressure of mixture?

1 $\frac{16}{7} \mathrm{R}$
2 $\frac{7}{16} \mathrm{R}$
3 $\mathrm{R}$
4 $\frac{23}{7} \mathrm{R}$
Kinetic Theory of Gases

139344 Which of the following relation is correct?

1 $\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{v}}}=\mathrm{R}$
2 $\mathrm{C}_{\mathrm{p}}+\mathrm{C}_{\mathrm{v}}=\mathrm{R}$
3 $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\mathrm{R}$
4 None of these
Kinetic Theory of Gases

139345 In a isothermal process, specific heat of gas is

1 zero
2 negative
3 infinity
4 None of these
Kinetic Theory of Gases

139346 Which of the following is incorrect?

1 $\mathrm{C}_{\mathrm{v}}=\frac{\mathrm{R}}{\gamma-1}$
2 $\mathrm{C}_{\mathrm{p}}=\frac{\gamma \mathrm{R}}{\gamma-1}$
3 $\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{v}}}=\gamma$
4 $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=2 \mathrm{R}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Kinetic Theory of Gases

139343 Four mole of hydrogen, two mole of helium and one mole of water vapour form an ideal gas mixture. What is the molar specific heat at constant pressure of mixture?

1 $\frac{16}{7} \mathrm{R}$
2 $\frac{7}{16} \mathrm{R}$
3 $\mathrm{R}$
4 $\frac{23}{7} \mathrm{R}$
Kinetic Theory of Gases

139344 Which of the following relation is correct?

1 $\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{v}}}=\mathrm{R}$
2 $\mathrm{C}_{\mathrm{p}}+\mathrm{C}_{\mathrm{v}}=\mathrm{R}$
3 $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\mathrm{R}$
4 None of these
Kinetic Theory of Gases

139345 In a isothermal process, specific heat of gas is

1 zero
2 negative
3 infinity
4 None of these
Kinetic Theory of Gases

139346 Which of the following is incorrect?

1 $\mathrm{C}_{\mathrm{v}}=\frac{\mathrm{R}}{\gamma-1}$
2 $\mathrm{C}_{\mathrm{p}}=\frac{\gamma \mathrm{R}}{\gamma-1}$
3 $\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{v}}}=\gamma$
4 $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=2 \mathrm{R}$
Kinetic Theory of Gases

139343 Four mole of hydrogen, two mole of helium and one mole of water vapour form an ideal gas mixture. What is the molar specific heat at constant pressure of mixture?

1 $\frac{16}{7} \mathrm{R}$
2 $\frac{7}{16} \mathrm{R}$
3 $\mathrm{R}$
4 $\frac{23}{7} \mathrm{R}$
Kinetic Theory of Gases

139344 Which of the following relation is correct?

1 $\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{v}}}=\mathrm{R}$
2 $\mathrm{C}_{\mathrm{p}}+\mathrm{C}_{\mathrm{v}}=\mathrm{R}$
3 $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\mathrm{R}$
4 None of these
Kinetic Theory of Gases

139345 In a isothermal process, specific heat of gas is

1 zero
2 negative
3 infinity
4 None of these
Kinetic Theory of Gases

139346 Which of the following is incorrect?

1 $\mathrm{C}_{\mathrm{v}}=\frac{\mathrm{R}}{\gamma-1}$
2 $\mathrm{C}_{\mathrm{p}}=\frac{\gamma \mathrm{R}}{\gamma-1}$
3 $\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{v}}}=\gamma$
4 $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=2 \mathrm{R}$