Specific heats of gases
Kinetic Theory of Gases

139313 If one mole of a monoatomic gas $\left(\gamma=\frac{5}{3}\right)$ is mixed with one mole diatomic gas $\left(\gamma=\frac{7}{5}\right)$, the value of $\gamma$ for the mixture is

1 1.40
2 1.50
3 1.53
4 3.07
Kinetic Theory of Gases

139314 2 moles of a diatomic gas are mixed with 1 mole of a monatomic gas. The ratio of two specific heats $\left(\gamma=C_{p} / C_{v}\right)$ of the mixture will be

1 $\frac{7}{3}$
2 $\frac{5}{4}$
3 $\frac{19}{13}$
4 $\frac{15}{19}$
Kinetic Theory of Gases

139317 For a certain gas the ratio of specific heats is given to be $r=1.5$. For this gas

1 $\mathrm{C}_{\mathrm{p}}=\frac{3 \mathrm{R}}{\mathrm{J}}$
2 $\mathrm{C}_{\mathrm{v}}=\frac{3 \mathrm{R}}{\mathrm{J}}$
3 $\mathrm{C}_{\mathrm{p}}=\frac{5 \mathrm{R}}{\mathrm{J}}$
4 $\mathrm{C}_{\mathrm{v}}=\frac{5 \mathrm{R}}{\mathrm{J}}$
Kinetic Theory of Gases

139321 Two metallic spheres having same heat capacities are of radii in the ratio $2: 3$ and densities in the ratio $5: 6$. The ratio of their specific heats is nearly

1 $4: 1$
2 $2: 3$
3 $5: 4$
4 $=\frac{7}{5}$
Kinetic Theory of Gases

139316 In non-rigid diatomic molecule with an additional vibrational mode
#[Qdiff: Hard, QCat: Numerical Based, examname: AP EAMCET-04.07.2022,Shift-II#

1 $81 \mathrm{C}_{\mathrm{v}}^{2}=49 \mathrm{C}_{\mathrm{P}}^{2}$
2 $49 \mathrm{C}_{\mathrm{v}}^{2}=25 \mathrm{C}_{\mathrm{P}}^{2}$
3 $49 \mathrm{C}_{\mathrm{v}}^{2}=81 \mathrm{C}_{\mathrm{P}}^{2}$
4 $25 \mathrm{C}_{\mathrm{v}}^{2}=49 \mathrm{C}_{\mathrm{P}}^{2}$
Kinetic Theory of Gases

139313 If one mole of a monoatomic gas $\left(\gamma=\frac{5}{3}\right)$ is mixed with one mole diatomic gas $\left(\gamma=\frac{7}{5}\right)$, the value of $\gamma$ for the mixture is

1 1.40
2 1.50
3 1.53
4 3.07
Kinetic Theory of Gases

139314 2 moles of a diatomic gas are mixed with 1 mole of a monatomic gas. The ratio of two specific heats $\left(\gamma=C_{p} / C_{v}\right)$ of the mixture will be

1 $\frac{7}{3}$
2 $\frac{5}{4}$
3 $\frac{19}{13}$
4 $\frac{15}{19}$
Kinetic Theory of Gases

139317 For a certain gas the ratio of specific heats is given to be $r=1.5$. For this gas

1 $\mathrm{C}_{\mathrm{p}}=\frac{3 \mathrm{R}}{\mathrm{J}}$
2 $\mathrm{C}_{\mathrm{v}}=\frac{3 \mathrm{R}}{\mathrm{J}}$
3 $\mathrm{C}_{\mathrm{p}}=\frac{5 \mathrm{R}}{\mathrm{J}}$
4 $\mathrm{C}_{\mathrm{v}}=\frac{5 \mathrm{R}}{\mathrm{J}}$
Kinetic Theory of Gases

139321 Two metallic spheres having same heat capacities are of radii in the ratio $2: 3$ and densities in the ratio $5: 6$. The ratio of their specific heats is nearly

1 $4: 1$
2 $2: 3$
3 $5: 4$
4 $=\frac{7}{5}$
Kinetic Theory of Gases

139316 In non-rigid diatomic molecule with an additional vibrational mode
#[Qdiff: Hard, QCat: Numerical Based, examname: AP EAMCET-04.07.2022,Shift-II#

1 $81 \mathrm{C}_{\mathrm{v}}^{2}=49 \mathrm{C}_{\mathrm{P}}^{2}$
2 $49 \mathrm{C}_{\mathrm{v}}^{2}=25 \mathrm{C}_{\mathrm{P}}^{2}$
3 $49 \mathrm{C}_{\mathrm{v}}^{2}=81 \mathrm{C}_{\mathrm{P}}^{2}$
4 $25 \mathrm{C}_{\mathrm{v}}^{2}=49 \mathrm{C}_{\mathrm{P}}^{2}$
Kinetic Theory of Gases

139313 If one mole of a monoatomic gas $\left(\gamma=\frac{5}{3}\right)$ is mixed with one mole diatomic gas $\left(\gamma=\frac{7}{5}\right)$, the value of $\gamma$ for the mixture is

1 1.40
2 1.50
3 1.53
4 3.07
Kinetic Theory of Gases

139314 2 moles of a diatomic gas are mixed with 1 mole of a monatomic gas. The ratio of two specific heats $\left(\gamma=C_{p} / C_{v}\right)$ of the mixture will be

1 $\frac{7}{3}$
2 $\frac{5}{4}$
3 $\frac{19}{13}$
4 $\frac{15}{19}$
Kinetic Theory of Gases

139317 For a certain gas the ratio of specific heats is given to be $r=1.5$. For this gas

1 $\mathrm{C}_{\mathrm{p}}=\frac{3 \mathrm{R}}{\mathrm{J}}$
2 $\mathrm{C}_{\mathrm{v}}=\frac{3 \mathrm{R}}{\mathrm{J}}$
3 $\mathrm{C}_{\mathrm{p}}=\frac{5 \mathrm{R}}{\mathrm{J}}$
4 $\mathrm{C}_{\mathrm{v}}=\frac{5 \mathrm{R}}{\mathrm{J}}$
Kinetic Theory of Gases

139321 Two metallic spheres having same heat capacities are of radii in the ratio $2: 3$ and densities in the ratio $5: 6$. The ratio of their specific heats is nearly

1 $4: 1$
2 $2: 3$
3 $5: 4$
4 $=\frac{7}{5}$
Kinetic Theory of Gases

139316 In non-rigid diatomic molecule with an additional vibrational mode
#[Qdiff: Hard, QCat: Numerical Based, examname: AP EAMCET-04.07.2022,Shift-II#

1 $81 \mathrm{C}_{\mathrm{v}}^{2}=49 \mathrm{C}_{\mathrm{P}}^{2}$
2 $49 \mathrm{C}_{\mathrm{v}}^{2}=25 \mathrm{C}_{\mathrm{P}}^{2}$
3 $49 \mathrm{C}_{\mathrm{v}}^{2}=81 \mathrm{C}_{\mathrm{P}}^{2}$
4 $25 \mathrm{C}_{\mathrm{v}}^{2}=49 \mathrm{C}_{\mathrm{P}}^{2}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Kinetic Theory of Gases

139313 If one mole of a monoatomic gas $\left(\gamma=\frac{5}{3}\right)$ is mixed with one mole diatomic gas $\left(\gamma=\frac{7}{5}\right)$, the value of $\gamma$ for the mixture is

1 1.40
2 1.50
3 1.53
4 3.07
Kinetic Theory of Gases

139314 2 moles of a diatomic gas are mixed with 1 mole of a monatomic gas. The ratio of two specific heats $\left(\gamma=C_{p} / C_{v}\right)$ of the mixture will be

1 $\frac{7}{3}$
2 $\frac{5}{4}$
3 $\frac{19}{13}$
4 $\frac{15}{19}$
Kinetic Theory of Gases

139317 For a certain gas the ratio of specific heats is given to be $r=1.5$. For this gas

1 $\mathrm{C}_{\mathrm{p}}=\frac{3 \mathrm{R}}{\mathrm{J}}$
2 $\mathrm{C}_{\mathrm{v}}=\frac{3 \mathrm{R}}{\mathrm{J}}$
3 $\mathrm{C}_{\mathrm{p}}=\frac{5 \mathrm{R}}{\mathrm{J}}$
4 $\mathrm{C}_{\mathrm{v}}=\frac{5 \mathrm{R}}{\mathrm{J}}$
Kinetic Theory of Gases

139321 Two metallic spheres having same heat capacities are of radii in the ratio $2: 3$ and densities in the ratio $5: 6$. The ratio of their specific heats is nearly

1 $4: 1$
2 $2: 3$
3 $5: 4$
4 $=\frac{7}{5}$
Kinetic Theory of Gases

139316 In non-rigid diatomic molecule with an additional vibrational mode
#[Qdiff: Hard, QCat: Numerical Based, examname: AP EAMCET-04.07.2022,Shift-II#

1 $81 \mathrm{C}_{\mathrm{v}}^{2}=49 \mathrm{C}_{\mathrm{P}}^{2}$
2 $49 \mathrm{C}_{\mathrm{v}}^{2}=25 \mathrm{C}_{\mathrm{P}}^{2}$
3 $49 \mathrm{C}_{\mathrm{v}}^{2}=81 \mathrm{C}_{\mathrm{P}}^{2}$
4 $25 \mathrm{C}_{\mathrm{v}}^{2}=49 \mathrm{C}_{\mathrm{P}}^{2}$
Kinetic Theory of Gases

139313 If one mole of a monoatomic gas $\left(\gamma=\frac{5}{3}\right)$ is mixed with one mole diatomic gas $\left(\gamma=\frac{7}{5}\right)$, the value of $\gamma$ for the mixture is

1 1.40
2 1.50
3 1.53
4 3.07
Kinetic Theory of Gases

139314 2 moles of a diatomic gas are mixed with 1 mole of a monatomic gas. The ratio of two specific heats $\left(\gamma=C_{p} / C_{v}\right)$ of the mixture will be

1 $\frac{7}{3}$
2 $\frac{5}{4}$
3 $\frac{19}{13}$
4 $\frac{15}{19}$
Kinetic Theory of Gases

139317 For a certain gas the ratio of specific heats is given to be $r=1.5$. For this gas

1 $\mathrm{C}_{\mathrm{p}}=\frac{3 \mathrm{R}}{\mathrm{J}}$
2 $\mathrm{C}_{\mathrm{v}}=\frac{3 \mathrm{R}}{\mathrm{J}}$
3 $\mathrm{C}_{\mathrm{p}}=\frac{5 \mathrm{R}}{\mathrm{J}}$
4 $\mathrm{C}_{\mathrm{v}}=\frac{5 \mathrm{R}}{\mathrm{J}}$
Kinetic Theory of Gases

139321 Two metallic spheres having same heat capacities are of radii in the ratio $2: 3$ and densities in the ratio $5: 6$. The ratio of their specific heats is nearly

1 $4: 1$
2 $2: 3$
3 $5: 4$
4 $=\frac{7}{5}$
Kinetic Theory of Gases

139316 In non-rigid diatomic molecule with an additional vibrational mode
#[Qdiff: Hard, QCat: Numerical Based, examname: AP EAMCET-04.07.2022,Shift-II#

1 $81 \mathrm{C}_{\mathrm{v}}^{2}=49 \mathrm{C}_{\mathrm{P}}^{2}$
2 $49 \mathrm{C}_{\mathrm{v}}^{2}=25 \mathrm{C}_{\mathrm{P}}^{2}$
3 $49 \mathrm{C}_{\mathrm{v}}^{2}=81 \mathrm{C}_{\mathrm{P}}^{2}$
4 $25 \mathrm{C}_{\mathrm{v}}^{2}=49 \mathrm{C}_{\mathrm{P}}^{2}$