Specific heats of gases
Kinetic Theory of Gases

139319 Specific heat of a gas undergoing adiabatic change is

1 Zero
2 Infinite
3 Positive
4 Negative
Kinetic Theory of Gases

139323 For an ideal gas, if the ratio of Molar specific heats $\gamma=1.4$, then the specific heat at constant pressure $C_{P}$, specific heat at constant volume $C_{V}$ and corresponding molecule are respectively

1 $\frac{9}{2} \mathrm{R}, \frac{7}{2} \mathrm{R}$, polyatomic
2 $\frac{7}{2} \mathrm{R}, \frac{5}{2} \mathrm{R}$, non - rigid diatomic
3 $\frac{7}{2} \mathrm{R}, \frac{5}{2} \mathrm{R}$, rigid diatomic
4 $\frac{5}{2} \mathrm{R}, \frac{3}{2} \mathrm{R}$, monoatomic
Kinetic Theory of Gases

139324 For a gas, $\frac{R}{C_{v}}=0.4$ where ' $R$ ' is universal gas constant and $C_{V}$ is the molar specific heat at constant volume. The gas is made up of molecule which are

1 Monoatomic
2 rigid diatomic
3 non-rigid diatomic
4 polyatomic
Kinetic Theory of Gases

139325 The molar specific heats of an ideal gas at constant pressure and constant volume are denoted by $C_{p}$ and $C_{v}$ respectively. If $\gamma=\frac{C_{p}}{C_{v}}$ and $R$ is the universal gas constant, then $C_{p}$ is equal to

1 $\frac{\gamma-1}{\mathrm{R}}$
2 $\frac{(\gamma-1)^{2}}{\mathrm{R}}$
3 $\frac{\gamma-1}{\gamma \mathrm{R}}$
4 $\frac{\gamma \mathrm{R}}{\gamma-1}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Kinetic Theory of Gases

139319 Specific heat of a gas undergoing adiabatic change is

1 Zero
2 Infinite
3 Positive
4 Negative
Kinetic Theory of Gases

139323 For an ideal gas, if the ratio of Molar specific heats $\gamma=1.4$, then the specific heat at constant pressure $C_{P}$, specific heat at constant volume $C_{V}$ and corresponding molecule are respectively

1 $\frac{9}{2} \mathrm{R}, \frac{7}{2} \mathrm{R}$, polyatomic
2 $\frac{7}{2} \mathrm{R}, \frac{5}{2} \mathrm{R}$, non - rigid diatomic
3 $\frac{7}{2} \mathrm{R}, \frac{5}{2} \mathrm{R}$, rigid diatomic
4 $\frac{5}{2} \mathrm{R}, \frac{3}{2} \mathrm{R}$, monoatomic
Kinetic Theory of Gases

139324 For a gas, $\frac{R}{C_{v}}=0.4$ where ' $R$ ' is universal gas constant and $C_{V}$ is the molar specific heat at constant volume. The gas is made up of molecule which are

1 Monoatomic
2 rigid diatomic
3 non-rigid diatomic
4 polyatomic
Kinetic Theory of Gases

139325 The molar specific heats of an ideal gas at constant pressure and constant volume are denoted by $C_{p}$ and $C_{v}$ respectively. If $\gamma=\frac{C_{p}}{C_{v}}$ and $R$ is the universal gas constant, then $C_{p}$ is equal to

1 $\frac{\gamma-1}{\mathrm{R}}$
2 $\frac{(\gamma-1)^{2}}{\mathrm{R}}$
3 $\frac{\gamma-1}{\gamma \mathrm{R}}$
4 $\frac{\gamma \mathrm{R}}{\gamma-1}$
Kinetic Theory of Gases

139319 Specific heat of a gas undergoing adiabatic change is

1 Zero
2 Infinite
3 Positive
4 Negative
Kinetic Theory of Gases

139323 For an ideal gas, if the ratio of Molar specific heats $\gamma=1.4$, then the specific heat at constant pressure $C_{P}$, specific heat at constant volume $C_{V}$ and corresponding molecule are respectively

1 $\frac{9}{2} \mathrm{R}, \frac{7}{2} \mathrm{R}$, polyatomic
2 $\frac{7}{2} \mathrm{R}, \frac{5}{2} \mathrm{R}$, non - rigid diatomic
3 $\frac{7}{2} \mathrm{R}, \frac{5}{2} \mathrm{R}$, rigid diatomic
4 $\frac{5}{2} \mathrm{R}, \frac{3}{2} \mathrm{R}$, monoatomic
Kinetic Theory of Gases

139324 For a gas, $\frac{R}{C_{v}}=0.4$ where ' $R$ ' is universal gas constant and $C_{V}$ is the molar specific heat at constant volume. The gas is made up of molecule which are

1 Monoatomic
2 rigid diatomic
3 non-rigid diatomic
4 polyatomic
Kinetic Theory of Gases

139325 The molar specific heats of an ideal gas at constant pressure and constant volume are denoted by $C_{p}$ and $C_{v}$ respectively. If $\gamma=\frac{C_{p}}{C_{v}}$ and $R$ is the universal gas constant, then $C_{p}$ is equal to

1 $\frac{\gamma-1}{\mathrm{R}}$
2 $\frac{(\gamma-1)^{2}}{\mathrm{R}}$
3 $\frac{\gamma-1}{\gamma \mathrm{R}}$
4 $\frac{\gamma \mathrm{R}}{\gamma-1}$
Kinetic Theory of Gases

139319 Specific heat of a gas undergoing adiabatic change is

1 Zero
2 Infinite
3 Positive
4 Negative
Kinetic Theory of Gases

139323 For an ideal gas, if the ratio of Molar specific heats $\gamma=1.4$, then the specific heat at constant pressure $C_{P}$, specific heat at constant volume $C_{V}$ and corresponding molecule are respectively

1 $\frac{9}{2} \mathrm{R}, \frac{7}{2} \mathrm{R}$, polyatomic
2 $\frac{7}{2} \mathrm{R}, \frac{5}{2} \mathrm{R}$, non - rigid diatomic
3 $\frac{7}{2} \mathrm{R}, \frac{5}{2} \mathrm{R}$, rigid diatomic
4 $\frac{5}{2} \mathrm{R}, \frac{3}{2} \mathrm{R}$, monoatomic
Kinetic Theory of Gases

139324 For a gas, $\frac{R}{C_{v}}=0.4$ where ' $R$ ' is universal gas constant and $C_{V}$ is the molar specific heat at constant volume. The gas is made up of molecule which are

1 Monoatomic
2 rigid diatomic
3 non-rigid diatomic
4 polyatomic
Kinetic Theory of Gases

139325 The molar specific heats of an ideal gas at constant pressure and constant volume are denoted by $C_{p}$ and $C_{v}$ respectively. If $\gamma=\frac{C_{p}}{C_{v}}$ and $R$ is the universal gas constant, then $C_{p}$ is equal to

1 $\frac{\gamma-1}{\mathrm{R}}$
2 $\frac{(\gamma-1)^{2}}{\mathrm{R}}$
3 $\frac{\gamma-1}{\gamma \mathrm{R}}$
4 $\frac{\gamma \mathrm{R}}{\gamma-1}$