Degree of Freedom, Various speeds of Gas Molecules
Kinetic Theory of Gases

139244 The ratio of rms speed of $\mathrm{O}_{2}$ to $\mathrm{H}_{2}$ is-

1 $\frac{1}{4}$
2 4
3 2
4 $\frac{1}{2}$
Kinetic Theory of Gases

139245 If mass of $\mathrm{He}$ is 4 times that of hydrogen, then mean velocity of $\mathrm{He}$ is :

1 2 times of $\mathrm{H}$-mean value
2 $\frac{1}{2}$ times of H-mean value
3 4 times of H-mean value
4 same as H-mean value
Kinetic Theory of Gases

139246 The ratio of root mean square velocities of $\mathrm{O}_{3}$ and $\mathrm{O}_{2}$ is:

1 $1: 1$
2 $2: 3$
3 $3: 2$
4 $\sqrt{2}: \sqrt{3}$
Kinetic Theory of Gases

139247 Nitrogen $\left(\mathbf{N}_{2}\right)$ is in equilibrium state at $T=$ $421 \mathrm{~K}$. The value of most probable speed, $v_{\mathrm{mp}}$ is-

1 $400 \mathrm{~m} / \mathrm{s}$
2 $421 \mathrm{~m} / \mathrm{s}$
3 $500 \mathrm{~m} / \mathrm{s}$
4 $600 \mathrm{~m} / \mathrm{s}$
Kinetic Theory of Gases

139244 The ratio of rms speed of $\mathrm{O}_{2}$ to $\mathrm{H}_{2}$ is-

1 $\frac{1}{4}$
2 4
3 2
4 $\frac{1}{2}$
Kinetic Theory of Gases

139245 If mass of $\mathrm{He}$ is 4 times that of hydrogen, then mean velocity of $\mathrm{He}$ is :

1 2 times of $\mathrm{H}$-mean value
2 $\frac{1}{2}$ times of H-mean value
3 4 times of H-mean value
4 same as H-mean value
Kinetic Theory of Gases

139246 The ratio of root mean square velocities of $\mathrm{O}_{3}$ and $\mathrm{O}_{2}$ is:

1 $1: 1$
2 $2: 3$
3 $3: 2$
4 $\sqrt{2}: \sqrt{3}$
Kinetic Theory of Gases

139247 Nitrogen $\left(\mathbf{N}_{2}\right)$ is in equilibrium state at $T=$ $421 \mathrm{~K}$. The value of most probable speed, $v_{\mathrm{mp}}$ is-

1 $400 \mathrm{~m} / \mathrm{s}$
2 $421 \mathrm{~m} / \mathrm{s}$
3 $500 \mathrm{~m} / \mathrm{s}$
4 $600 \mathrm{~m} / \mathrm{s}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Kinetic Theory of Gases

139244 The ratio of rms speed of $\mathrm{O}_{2}$ to $\mathrm{H}_{2}$ is-

1 $\frac{1}{4}$
2 4
3 2
4 $\frac{1}{2}$
Kinetic Theory of Gases

139245 If mass of $\mathrm{He}$ is 4 times that of hydrogen, then mean velocity of $\mathrm{He}$ is :

1 2 times of $\mathrm{H}$-mean value
2 $\frac{1}{2}$ times of H-mean value
3 4 times of H-mean value
4 same as H-mean value
Kinetic Theory of Gases

139246 The ratio of root mean square velocities of $\mathrm{O}_{3}$ and $\mathrm{O}_{2}$ is:

1 $1: 1$
2 $2: 3$
3 $3: 2$
4 $\sqrt{2}: \sqrt{3}$
Kinetic Theory of Gases

139247 Nitrogen $\left(\mathbf{N}_{2}\right)$ is in equilibrium state at $T=$ $421 \mathrm{~K}$. The value of most probable speed, $v_{\mathrm{mp}}$ is-

1 $400 \mathrm{~m} / \mathrm{s}$
2 $421 \mathrm{~m} / \mathrm{s}$
3 $500 \mathrm{~m} / \mathrm{s}$
4 $600 \mathrm{~m} / \mathrm{s}$
Kinetic Theory of Gases

139244 The ratio of rms speed of $\mathrm{O}_{2}$ to $\mathrm{H}_{2}$ is-

1 $\frac{1}{4}$
2 4
3 2
4 $\frac{1}{2}$
Kinetic Theory of Gases

139245 If mass of $\mathrm{He}$ is 4 times that of hydrogen, then mean velocity of $\mathrm{He}$ is :

1 2 times of $\mathrm{H}$-mean value
2 $\frac{1}{2}$ times of H-mean value
3 4 times of H-mean value
4 same as H-mean value
Kinetic Theory of Gases

139246 The ratio of root mean square velocities of $\mathrm{O}_{3}$ and $\mathrm{O}_{2}$ is:

1 $1: 1$
2 $2: 3$
3 $3: 2$
4 $\sqrt{2}: \sqrt{3}$
Kinetic Theory of Gases

139247 Nitrogen $\left(\mathbf{N}_{2}\right)$ is in equilibrium state at $T=$ $421 \mathrm{~K}$. The value of most probable speed, $v_{\mathrm{mp}}$ is-

1 $400 \mathrm{~m} / \mathrm{s}$
2 $421 \mathrm{~m} / \mathrm{s}$
3 $500 \mathrm{~m} / \mathrm{s}$
4 $600 \mathrm{~m} / \mathrm{s}$