Degree of Freedom, Various speeds of Gas Molecules
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Kinetic Theory of Gases

139240 If the rms velocity of a gas is $v$, then

1 $\mathrm{v}^{2} \mathrm{~T}=$ constant
2 $\mathrm{v}^{2} / \mathrm{T}=$ constant
3 $\mathrm{vT}^{2}=$ constant
4 $\mathrm{v}$ is independent of $\mathrm{T}$
Kinetic Theory of Gases

139241 For monoatomic gas which is correct?

1 $\mathrm{C}_{\mathrm{V}}=\frac{3}{5} \mathrm{R}$
2 $\mathrm{C}_{\mathrm{P}}=\frac{5}{2} \mathrm{R}$
3 $\mathrm{C}_{\mathrm{P}}-\mathrm{C}_{\mathrm{V}}=2 \mathrm{R}$
4 $\frac{\mathrm{C}_{\mathrm{P}}}{\mathrm{C}_{\mathrm{V}}}=\frac{3}{5}$
Kinetic Theory of Gases

139242 The average energy of molecules in a sample of oxygen gas at $300 \mathrm{~K}$ are $6.21 \times 10^{-21} \mathrm{~J}$. The corresponding values at $600 \mathrm{~K}$ are

1 $12.12 \times 10^{-21} \mathrm{~J}$
2 $8.78 \times 10^{-21} \mathrm{~J}$
3 $6.21 \times 10^{-21} \mathrm{~J}$
4 $12.42 \times 10^{-21} \mathrm{~J}$
Kinetic Theory of Gases

139243 Velocities of three molecules are 2,3 and $4 \mathrm{~m} / \mathrm{s}$.
Ratio of mean velocity to R.M.S. velocity is

1 $ \lt 1$
2 $=1$
3 $>1$
4 $>2$
Kinetic Theory of Gases

139240 If the rms velocity of a gas is $v$, then

1 $\mathrm{v}^{2} \mathrm{~T}=$ constant
2 $\mathrm{v}^{2} / \mathrm{T}=$ constant
3 $\mathrm{vT}^{2}=$ constant
4 $\mathrm{v}$ is independent of $\mathrm{T}$
Kinetic Theory of Gases

139241 For monoatomic gas which is correct?

1 $\mathrm{C}_{\mathrm{V}}=\frac{3}{5} \mathrm{R}$
2 $\mathrm{C}_{\mathrm{P}}=\frac{5}{2} \mathrm{R}$
3 $\mathrm{C}_{\mathrm{P}}-\mathrm{C}_{\mathrm{V}}=2 \mathrm{R}$
4 $\frac{\mathrm{C}_{\mathrm{P}}}{\mathrm{C}_{\mathrm{V}}}=\frac{3}{5}$
Kinetic Theory of Gases

139242 The average energy of molecules in a sample of oxygen gas at $300 \mathrm{~K}$ are $6.21 \times 10^{-21} \mathrm{~J}$. The corresponding values at $600 \mathrm{~K}$ are

1 $12.12 \times 10^{-21} \mathrm{~J}$
2 $8.78 \times 10^{-21} \mathrm{~J}$
3 $6.21 \times 10^{-21} \mathrm{~J}$
4 $12.42 \times 10^{-21} \mathrm{~J}$
Kinetic Theory of Gases

139243 Velocities of three molecules are 2,3 and $4 \mathrm{~m} / \mathrm{s}$.
Ratio of mean velocity to R.M.S. velocity is

1 $ \lt 1$
2 $=1$
3 $>1$
4 $>2$
Kinetic Theory of Gases

139240 If the rms velocity of a gas is $v$, then

1 $\mathrm{v}^{2} \mathrm{~T}=$ constant
2 $\mathrm{v}^{2} / \mathrm{T}=$ constant
3 $\mathrm{vT}^{2}=$ constant
4 $\mathrm{v}$ is independent of $\mathrm{T}$
Kinetic Theory of Gases

139241 For monoatomic gas which is correct?

1 $\mathrm{C}_{\mathrm{V}}=\frac{3}{5} \mathrm{R}$
2 $\mathrm{C}_{\mathrm{P}}=\frac{5}{2} \mathrm{R}$
3 $\mathrm{C}_{\mathrm{P}}-\mathrm{C}_{\mathrm{V}}=2 \mathrm{R}$
4 $\frac{\mathrm{C}_{\mathrm{P}}}{\mathrm{C}_{\mathrm{V}}}=\frac{3}{5}$
Kinetic Theory of Gases

139242 The average energy of molecules in a sample of oxygen gas at $300 \mathrm{~K}$ are $6.21 \times 10^{-21} \mathrm{~J}$. The corresponding values at $600 \mathrm{~K}$ are

1 $12.12 \times 10^{-21} \mathrm{~J}$
2 $8.78 \times 10^{-21} \mathrm{~J}$
3 $6.21 \times 10^{-21} \mathrm{~J}$
4 $12.42 \times 10^{-21} \mathrm{~J}$
Kinetic Theory of Gases

139243 Velocities of three molecules are 2,3 and $4 \mathrm{~m} / \mathrm{s}$.
Ratio of mean velocity to R.M.S. velocity is

1 $ \lt 1$
2 $=1$
3 $>1$
4 $>2$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Kinetic Theory of Gases

139240 If the rms velocity of a gas is $v$, then

1 $\mathrm{v}^{2} \mathrm{~T}=$ constant
2 $\mathrm{v}^{2} / \mathrm{T}=$ constant
3 $\mathrm{vT}^{2}=$ constant
4 $\mathrm{v}$ is independent of $\mathrm{T}$
Kinetic Theory of Gases

139241 For monoatomic gas which is correct?

1 $\mathrm{C}_{\mathrm{V}}=\frac{3}{5} \mathrm{R}$
2 $\mathrm{C}_{\mathrm{P}}=\frac{5}{2} \mathrm{R}$
3 $\mathrm{C}_{\mathrm{P}}-\mathrm{C}_{\mathrm{V}}=2 \mathrm{R}$
4 $\frac{\mathrm{C}_{\mathrm{P}}}{\mathrm{C}_{\mathrm{V}}}=\frac{3}{5}$
Kinetic Theory of Gases

139242 The average energy of molecules in a sample of oxygen gas at $300 \mathrm{~K}$ are $6.21 \times 10^{-21} \mathrm{~J}$. The corresponding values at $600 \mathrm{~K}$ are

1 $12.12 \times 10^{-21} \mathrm{~J}$
2 $8.78 \times 10^{-21} \mathrm{~J}$
3 $6.21 \times 10^{-21} \mathrm{~J}$
4 $12.42 \times 10^{-21} \mathrm{~J}$
Kinetic Theory of Gases

139243 Velocities of three molecules are 2,3 and $4 \mathrm{~m} / \mathrm{s}$.
Ratio of mean velocity to R.M.S. velocity is

1 $ \lt 1$
2 $=1$
3 $>1$
4 $>2$