Degree of Freedom, Various speeds of Gas Molecules
Kinetic Theory of Gases

139234 One $\mathrm{kg}$ of a diatomic gas is at a pressure of $8 \times$ $10^{4} \mathrm{~N} / \mathrm{m}^{2}$. The density of the gas is $4 \mathrm{~kg} / \mathrm{m}^{3}$. What is the energy of the gas due to its thermal motion?

1 $5 \times 10^{4} \mathrm{~J}$
2 $6 \times 10^{4} \mathrm{~J}$
3 $7 \times 10^{4} \mathrm{~J}$
4 $3 \times 10^{4} \mathrm{~J}$
Kinetic Theory of Gases

139235 Which of the following relation correct? $\left(\mathrm{V}_{\mathrm{rms}^{-}}\right.$ root mean square velocity, $\overrightarrow{\mathbf{u}}$-mean velocity and $\mathbf{u}_{\mathrm{mp}}$-most probable velocity)

1 $\mathrm{V}_{\mathrm{rms}}>\overline{\mathrm{V}} \lt \mathrm{V}_{\mathrm{mp}}$
2 $\mathrm{V}_{\text {rms }} \lt \overline{\mathrm{V}}>\mathrm{V}_{\mathrm{mp}}$
3 $\mathrm{V}_{\mathrm{rms}}>\overline{\mathrm{V}}>\mathrm{V}_{\mathrm{mp}}$
4 None of the above
Kinetic Theory of Gases

139237 The root mean square velocity of gas molecules at $27^{\circ} \mathrm{C}$ is $1365 \mathrm{~m} / \mathrm{s}$. The gas is

1 $\mathrm{O}_{2}$
2 $\mathrm{He}$
3 $\mathrm{N}_{2}$
4 $\mathrm{CO}_{2}$
Kinetic Theory of Gases

139238 At which temperature the velocity of $\mathrm{O}_{2}$ molecules will be equal to the velocity of $\mathrm{N}_{2}$ molecules at $0^{\circ} \mathrm{C}$ ?

1 $40^{\circ} \mathrm{C}$
2 $93^{\circ} \mathrm{C}$
3 $39^{\circ} \mathrm{C}$
4 cannot be calculated
Kinetic Theory of Gases

139239 Two gases are at absolute temperatures $300 \mathrm{~K}$ and $350 \mathrm{~K}$ respectively. The ratio of average kinetic energy of their molecules is

1 $6: 7$
2 $36: 49$
3 $7: 6$
4 $343: 216$
Kinetic Theory of Gases

139234 One $\mathrm{kg}$ of a diatomic gas is at a pressure of $8 \times$ $10^{4} \mathrm{~N} / \mathrm{m}^{2}$. The density of the gas is $4 \mathrm{~kg} / \mathrm{m}^{3}$. What is the energy of the gas due to its thermal motion?

1 $5 \times 10^{4} \mathrm{~J}$
2 $6 \times 10^{4} \mathrm{~J}$
3 $7 \times 10^{4} \mathrm{~J}$
4 $3 \times 10^{4} \mathrm{~J}$
Kinetic Theory of Gases

139235 Which of the following relation correct? $\left(\mathrm{V}_{\mathrm{rms}^{-}}\right.$ root mean square velocity, $\overrightarrow{\mathbf{u}}$-mean velocity and $\mathbf{u}_{\mathrm{mp}}$-most probable velocity)

1 $\mathrm{V}_{\mathrm{rms}}>\overline{\mathrm{V}} \lt \mathrm{V}_{\mathrm{mp}}$
2 $\mathrm{V}_{\text {rms }} \lt \overline{\mathrm{V}}>\mathrm{V}_{\mathrm{mp}}$
3 $\mathrm{V}_{\mathrm{rms}}>\overline{\mathrm{V}}>\mathrm{V}_{\mathrm{mp}}$
4 None of the above
Kinetic Theory of Gases

139237 The root mean square velocity of gas molecules at $27^{\circ} \mathrm{C}$ is $1365 \mathrm{~m} / \mathrm{s}$. The gas is

1 $\mathrm{O}_{2}$
2 $\mathrm{He}$
3 $\mathrm{N}_{2}$
4 $\mathrm{CO}_{2}$
Kinetic Theory of Gases

139238 At which temperature the velocity of $\mathrm{O}_{2}$ molecules will be equal to the velocity of $\mathrm{N}_{2}$ molecules at $0^{\circ} \mathrm{C}$ ?

1 $40^{\circ} \mathrm{C}$
2 $93^{\circ} \mathrm{C}$
3 $39^{\circ} \mathrm{C}$
4 cannot be calculated
Kinetic Theory of Gases

139239 Two gases are at absolute temperatures $300 \mathrm{~K}$ and $350 \mathrm{~K}$ respectively. The ratio of average kinetic energy of their molecules is

1 $6: 7$
2 $36: 49$
3 $7: 6$
4 $343: 216$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Kinetic Theory of Gases

139234 One $\mathrm{kg}$ of a diatomic gas is at a pressure of $8 \times$ $10^{4} \mathrm{~N} / \mathrm{m}^{2}$. The density of the gas is $4 \mathrm{~kg} / \mathrm{m}^{3}$. What is the energy of the gas due to its thermal motion?

1 $5 \times 10^{4} \mathrm{~J}$
2 $6 \times 10^{4} \mathrm{~J}$
3 $7 \times 10^{4} \mathrm{~J}$
4 $3 \times 10^{4} \mathrm{~J}$
Kinetic Theory of Gases

139235 Which of the following relation correct? $\left(\mathrm{V}_{\mathrm{rms}^{-}}\right.$ root mean square velocity, $\overrightarrow{\mathbf{u}}$-mean velocity and $\mathbf{u}_{\mathrm{mp}}$-most probable velocity)

1 $\mathrm{V}_{\mathrm{rms}}>\overline{\mathrm{V}} \lt \mathrm{V}_{\mathrm{mp}}$
2 $\mathrm{V}_{\text {rms }} \lt \overline{\mathrm{V}}>\mathrm{V}_{\mathrm{mp}}$
3 $\mathrm{V}_{\mathrm{rms}}>\overline{\mathrm{V}}>\mathrm{V}_{\mathrm{mp}}$
4 None of the above
Kinetic Theory of Gases

139237 The root mean square velocity of gas molecules at $27^{\circ} \mathrm{C}$ is $1365 \mathrm{~m} / \mathrm{s}$. The gas is

1 $\mathrm{O}_{2}$
2 $\mathrm{He}$
3 $\mathrm{N}_{2}$
4 $\mathrm{CO}_{2}$
Kinetic Theory of Gases

139238 At which temperature the velocity of $\mathrm{O}_{2}$ molecules will be equal to the velocity of $\mathrm{N}_{2}$ molecules at $0^{\circ} \mathrm{C}$ ?

1 $40^{\circ} \mathrm{C}$
2 $93^{\circ} \mathrm{C}$
3 $39^{\circ} \mathrm{C}$
4 cannot be calculated
Kinetic Theory of Gases

139239 Two gases are at absolute temperatures $300 \mathrm{~K}$ and $350 \mathrm{~K}$ respectively. The ratio of average kinetic energy of their molecules is

1 $6: 7$
2 $36: 49$
3 $7: 6$
4 $343: 216$
Kinetic Theory of Gases

139234 One $\mathrm{kg}$ of a diatomic gas is at a pressure of $8 \times$ $10^{4} \mathrm{~N} / \mathrm{m}^{2}$. The density of the gas is $4 \mathrm{~kg} / \mathrm{m}^{3}$. What is the energy of the gas due to its thermal motion?

1 $5 \times 10^{4} \mathrm{~J}$
2 $6 \times 10^{4} \mathrm{~J}$
3 $7 \times 10^{4} \mathrm{~J}$
4 $3 \times 10^{4} \mathrm{~J}$
Kinetic Theory of Gases

139235 Which of the following relation correct? $\left(\mathrm{V}_{\mathrm{rms}^{-}}\right.$ root mean square velocity, $\overrightarrow{\mathbf{u}}$-mean velocity and $\mathbf{u}_{\mathrm{mp}}$-most probable velocity)

1 $\mathrm{V}_{\mathrm{rms}}>\overline{\mathrm{V}} \lt \mathrm{V}_{\mathrm{mp}}$
2 $\mathrm{V}_{\text {rms }} \lt \overline{\mathrm{V}}>\mathrm{V}_{\mathrm{mp}}$
3 $\mathrm{V}_{\mathrm{rms}}>\overline{\mathrm{V}}>\mathrm{V}_{\mathrm{mp}}$
4 None of the above
Kinetic Theory of Gases

139237 The root mean square velocity of gas molecules at $27^{\circ} \mathrm{C}$ is $1365 \mathrm{~m} / \mathrm{s}$. The gas is

1 $\mathrm{O}_{2}$
2 $\mathrm{He}$
3 $\mathrm{N}_{2}$
4 $\mathrm{CO}_{2}$
Kinetic Theory of Gases

139238 At which temperature the velocity of $\mathrm{O}_{2}$ molecules will be equal to the velocity of $\mathrm{N}_{2}$ molecules at $0^{\circ} \mathrm{C}$ ?

1 $40^{\circ} \mathrm{C}$
2 $93^{\circ} \mathrm{C}$
3 $39^{\circ} \mathrm{C}$
4 cannot be calculated
Kinetic Theory of Gases

139239 Two gases are at absolute temperatures $300 \mathrm{~K}$ and $350 \mathrm{~K}$ respectively. The ratio of average kinetic energy of their molecules is

1 $6: 7$
2 $36: 49$
3 $7: 6$
4 $343: 216$
Kinetic Theory of Gases

139234 One $\mathrm{kg}$ of a diatomic gas is at a pressure of $8 \times$ $10^{4} \mathrm{~N} / \mathrm{m}^{2}$. The density of the gas is $4 \mathrm{~kg} / \mathrm{m}^{3}$. What is the energy of the gas due to its thermal motion?

1 $5 \times 10^{4} \mathrm{~J}$
2 $6 \times 10^{4} \mathrm{~J}$
3 $7 \times 10^{4} \mathrm{~J}$
4 $3 \times 10^{4} \mathrm{~J}$
Kinetic Theory of Gases

139235 Which of the following relation correct? $\left(\mathrm{V}_{\mathrm{rms}^{-}}\right.$ root mean square velocity, $\overrightarrow{\mathbf{u}}$-mean velocity and $\mathbf{u}_{\mathrm{mp}}$-most probable velocity)

1 $\mathrm{V}_{\mathrm{rms}}>\overline{\mathrm{V}} \lt \mathrm{V}_{\mathrm{mp}}$
2 $\mathrm{V}_{\text {rms }} \lt \overline{\mathrm{V}}>\mathrm{V}_{\mathrm{mp}}$
3 $\mathrm{V}_{\mathrm{rms}}>\overline{\mathrm{V}}>\mathrm{V}_{\mathrm{mp}}$
4 None of the above
Kinetic Theory of Gases

139237 The root mean square velocity of gas molecules at $27^{\circ} \mathrm{C}$ is $1365 \mathrm{~m} / \mathrm{s}$. The gas is

1 $\mathrm{O}_{2}$
2 $\mathrm{He}$
3 $\mathrm{N}_{2}$
4 $\mathrm{CO}_{2}$
Kinetic Theory of Gases

139238 At which temperature the velocity of $\mathrm{O}_{2}$ molecules will be equal to the velocity of $\mathrm{N}_{2}$ molecules at $0^{\circ} \mathrm{C}$ ?

1 $40^{\circ} \mathrm{C}$
2 $93^{\circ} \mathrm{C}$
3 $39^{\circ} \mathrm{C}$
4 cannot be calculated
Kinetic Theory of Gases

139239 Two gases are at absolute temperatures $300 \mathrm{~K}$ and $350 \mathrm{~K}$ respectively. The ratio of average kinetic energy of their molecules is

1 $6: 7$
2 $36: 49$
3 $7: 6$
4 $343: 216$