Law of Radioactive decay
NUCLEAR PHYSICS

147846 An archaeologist analyses the wood in a prehistoric structure and finds that $\mathrm{C}^{14}$ (Half life $=5700$ years) to $C^{12}$ is only one-forth of that found in the cells of buried plants.
The age of the wood is about

1 5700 years
2 2850 years
3 11,400 years
4 22, 800 years
NUCLEAR PHYSICS

147848 A nucleus ${ }_{\mathrm{Z}} \mathrm{X}^{\mathrm{A}}$ emits an $\alpha$-particle with velocity $v$. The recoil speed of the daughter nucleus is :

1 $\frac{\mathrm{A}-4}{4 \mathrm{v}}$
2 $\frac{4 \mathrm{~V}}{\mathrm{~A}-4}$
3 $\mathrm{V}$
4 $\frac{\mathrm{V}}{4}$
NUCLEAR PHYSICS

147849 A radioactive nuclide is produced at the constant rate of $n$ per second (say, by bombarding a target with neutrons).
The expected number $N$ of nuclei in existence $t$ seconds after the number is $N_{0}$ is given by

1 $\mathrm{N}=\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}}$
2 $\mathrm{N}=\frac{\mathrm{n}}{\lambda}+\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}}$
3 $\mathrm{N}=\frac{\mathrm{n}}{\lambda}+\left(\mathrm{N}_{0}-\frac{\mathrm{n}}{\lambda}\right) \mathrm{e}^{-\lambda \mathrm{t}}$
4 $\mathrm{N}=\frac{\mathrm{n}}{\lambda}+\left(\mathrm{N}_{0}+\frac{\mathrm{n}}{\lambda}\right) \mathrm{e}^{-\lambda \mathrm{t}}$
Where $\lambda$ is the decay constant of sample.
NUCLEAR PHYSICS

147850 The fossil bone has a ${ }^{14} \mathrm{C}:{ }^{12} \mathrm{C}$ ratio, which is $\left[\frac{1}{16}\right]$ of that in a living animal bone. If the halflife of ${ }^{14} \mathrm{C}$ is 5730 years, then the age of the fossil bone is

1 11460 years
2 17190 years
3 22920 years
4 45840 years
NUCLEAR PHYSICS

147846 An archaeologist analyses the wood in a prehistoric structure and finds that $\mathrm{C}^{14}$ (Half life $=5700$ years) to $C^{12}$ is only one-forth of that found in the cells of buried plants.
The age of the wood is about

1 5700 years
2 2850 years
3 11,400 years
4 22, 800 years
NUCLEAR PHYSICS

147848 A nucleus ${ }_{\mathrm{Z}} \mathrm{X}^{\mathrm{A}}$ emits an $\alpha$-particle with velocity $v$. The recoil speed of the daughter nucleus is :

1 $\frac{\mathrm{A}-4}{4 \mathrm{v}}$
2 $\frac{4 \mathrm{~V}}{\mathrm{~A}-4}$
3 $\mathrm{V}$
4 $\frac{\mathrm{V}}{4}$
NUCLEAR PHYSICS

147849 A radioactive nuclide is produced at the constant rate of $n$ per second (say, by bombarding a target with neutrons).
The expected number $N$ of nuclei in existence $t$ seconds after the number is $N_{0}$ is given by

1 $\mathrm{N}=\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}}$
2 $\mathrm{N}=\frac{\mathrm{n}}{\lambda}+\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}}$
3 $\mathrm{N}=\frac{\mathrm{n}}{\lambda}+\left(\mathrm{N}_{0}-\frac{\mathrm{n}}{\lambda}\right) \mathrm{e}^{-\lambda \mathrm{t}}$
4 $\mathrm{N}=\frac{\mathrm{n}}{\lambda}+\left(\mathrm{N}_{0}+\frac{\mathrm{n}}{\lambda}\right) \mathrm{e}^{-\lambda \mathrm{t}}$
Where $\lambda$ is the decay constant of sample.
NUCLEAR PHYSICS

147850 The fossil bone has a ${ }^{14} \mathrm{C}:{ }^{12} \mathrm{C}$ ratio, which is $\left[\frac{1}{16}\right]$ of that in a living animal bone. If the halflife of ${ }^{14} \mathrm{C}$ is 5730 years, then the age of the fossil bone is

1 11460 years
2 17190 years
3 22920 years
4 45840 years
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
NUCLEAR PHYSICS

147846 An archaeologist analyses the wood in a prehistoric structure and finds that $\mathrm{C}^{14}$ (Half life $=5700$ years) to $C^{12}$ is only one-forth of that found in the cells of buried plants.
The age of the wood is about

1 5700 years
2 2850 years
3 11,400 years
4 22, 800 years
NUCLEAR PHYSICS

147848 A nucleus ${ }_{\mathrm{Z}} \mathrm{X}^{\mathrm{A}}$ emits an $\alpha$-particle with velocity $v$. The recoil speed of the daughter nucleus is :

1 $\frac{\mathrm{A}-4}{4 \mathrm{v}}$
2 $\frac{4 \mathrm{~V}}{\mathrm{~A}-4}$
3 $\mathrm{V}$
4 $\frac{\mathrm{V}}{4}$
NUCLEAR PHYSICS

147849 A radioactive nuclide is produced at the constant rate of $n$ per second (say, by bombarding a target with neutrons).
The expected number $N$ of nuclei in existence $t$ seconds after the number is $N_{0}$ is given by

1 $\mathrm{N}=\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}}$
2 $\mathrm{N}=\frac{\mathrm{n}}{\lambda}+\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}}$
3 $\mathrm{N}=\frac{\mathrm{n}}{\lambda}+\left(\mathrm{N}_{0}-\frac{\mathrm{n}}{\lambda}\right) \mathrm{e}^{-\lambda \mathrm{t}}$
4 $\mathrm{N}=\frac{\mathrm{n}}{\lambda}+\left(\mathrm{N}_{0}+\frac{\mathrm{n}}{\lambda}\right) \mathrm{e}^{-\lambda \mathrm{t}}$
Where $\lambda$ is the decay constant of sample.
NUCLEAR PHYSICS

147850 The fossil bone has a ${ }^{14} \mathrm{C}:{ }^{12} \mathrm{C}$ ratio, which is $\left[\frac{1}{16}\right]$ of that in a living animal bone. If the halflife of ${ }^{14} \mathrm{C}$ is 5730 years, then the age of the fossil bone is

1 11460 years
2 17190 years
3 22920 years
4 45840 years
NUCLEAR PHYSICS

147846 An archaeologist analyses the wood in a prehistoric structure and finds that $\mathrm{C}^{14}$ (Half life $=5700$ years) to $C^{12}$ is only one-forth of that found in the cells of buried plants.
The age of the wood is about

1 5700 years
2 2850 years
3 11,400 years
4 22, 800 years
NUCLEAR PHYSICS

147848 A nucleus ${ }_{\mathrm{Z}} \mathrm{X}^{\mathrm{A}}$ emits an $\alpha$-particle with velocity $v$. The recoil speed of the daughter nucleus is :

1 $\frac{\mathrm{A}-4}{4 \mathrm{v}}$
2 $\frac{4 \mathrm{~V}}{\mathrm{~A}-4}$
3 $\mathrm{V}$
4 $\frac{\mathrm{V}}{4}$
NUCLEAR PHYSICS

147849 A radioactive nuclide is produced at the constant rate of $n$ per second (say, by bombarding a target with neutrons).
The expected number $N$ of nuclei in existence $t$ seconds after the number is $N_{0}$ is given by

1 $\mathrm{N}=\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}}$
2 $\mathrm{N}=\frac{\mathrm{n}}{\lambda}+\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}}$
3 $\mathrm{N}=\frac{\mathrm{n}}{\lambda}+\left(\mathrm{N}_{0}-\frac{\mathrm{n}}{\lambda}\right) \mathrm{e}^{-\lambda \mathrm{t}}$
4 $\mathrm{N}=\frac{\mathrm{n}}{\lambda}+\left(\mathrm{N}_{0}+\frac{\mathrm{n}}{\lambda}\right) \mathrm{e}^{-\lambda \mathrm{t}}$
Where $\lambda$ is the decay constant of sample.
NUCLEAR PHYSICS

147850 The fossil bone has a ${ }^{14} \mathrm{C}:{ }^{12} \mathrm{C}$ ratio, which is $\left[\frac{1}{16}\right]$ of that in a living animal bone. If the halflife of ${ }^{14} \mathrm{C}$ is 5730 years, then the age of the fossil bone is

1 11460 years
2 17190 years
3 22920 years
4 45840 years