147845
Assertion: If the half life of a radioactive substance is $\mathbf{4 0}$ days then $\mathbf{2 5 \%}$ substance decay in 20 days.
Reason: $\quad \mathrm{N}=\mathrm{N}_{\mathbf{0}}\left(\frac{1}{2}\right)^{\mathrm{n}}$
where, $\mathbf{n}=\frac{\text { time elapsed }}{\text { half life period }}$
147845
Assertion: If the half life of a radioactive substance is $\mathbf{4 0}$ days then $\mathbf{2 5 \%}$ substance decay in 20 days.
Reason: $\quad \mathrm{N}=\mathrm{N}_{\mathbf{0}}\left(\frac{1}{2}\right)^{\mathrm{n}}$
where, $\mathbf{n}=\frac{\text { time elapsed }}{\text { half life period }}$
147845
Assertion: If the half life of a radioactive substance is $\mathbf{4 0}$ days then $\mathbf{2 5 \%}$ substance decay in 20 days.
Reason: $\quad \mathrm{N}=\mathrm{N}_{\mathbf{0}}\left(\frac{1}{2}\right)^{\mathrm{n}}$
where, $\mathbf{n}=\frac{\text { time elapsed }}{\text { half life period }}$
147845
Assertion: If the half life of a radioactive substance is $\mathbf{4 0}$ days then $\mathbf{2 5 \%}$ substance decay in 20 days.
Reason: $\quad \mathrm{N}=\mathrm{N}_{\mathbf{0}}\left(\frac{1}{2}\right)^{\mathrm{n}}$
where, $\mathbf{n}=\frac{\text { time elapsed }}{\text { half life period }}$