Radioactivity
NUCLEAR PHYSICS

147562 If a radioactive element having half-life of 30 min is undergoing beta decay, the fraction of radioactive element remains undecayed after $90 \mathrm{~min}$. will be

1 $\frac{1}{8}$
2 $\frac{1}{2}$
3 $\frac{1}{4}$
4 $\frac{1}{16}$
NUCLEAR PHYSICS

147564 A nuclear reactor delivers a power of $10^{9} \mathrm{~W}$, the amount of fuel consumed by the reactor in one hour is

1 $0.72 \mathrm{~g}$
2 $0.96 \mathrm{~g}$
3 $0.04 \mathrm{~g}$
4 $0.08 \mathrm{~g}$
NUCLEAR PHYSICS

147565 Calculate the energy released during the alpha decay of ${ }_{92}^{238} U=238$. Given the following data.
\({ }_{92}^{238} \mathrm{U}=238.05079 \mathrm{u},{ }_{90}^{234} \mathrm{Th}=234.04363 \mathrm{u}\)
${ }_{2}^{4} \mathrm{He}=4.00260 \mathrm{u}, 1 \mathrm{u}=931.5 \mathrm{MeV} / \mathrm{C}^{2}$.

1 $4.25 \mathrm{MeV}$
2 $3.75 \mathrm{MeV}$
3 $3.50 \mathrm{MeV}$
4 $2.75 \mathrm{MeV}$
NUCLEAR PHYSICS

147566 A radioactive element $A$ converts into another stable element B. Half life of $A$ is $\mathbf{1 . 5}$ hrs. After time $t$ the ratio of atoms of $A$ and $B$ is found to be $1: 8$, then $t$ in hours is-

1 6
2 8
3 Between 3 to 4.5
4 Between 4.5 to 6
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
NUCLEAR PHYSICS

147562 If a radioactive element having half-life of 30 min is undergoing beta decay, the fraction of radioactive element remains undecayed after $90 \mathrm{~min}$. will be

1 $\frac{1}{8}$
2 $\frac{1}{2}$
3 $\frac{1}{4}$
4 $\frac{1}{16}$
NUCLEAR PHYSICS

147564 A nuclear reactor delivers a power of $10^{9} \mathrm{~W}$, the amount of fuel consumed by the reactor in one hour is

1 $0.72 \mathrm{~g}$
2 $0.96 \mathrm{~g}$
3 $0.04 \mathrm{~g}$
4 $0.08 \mathrm{~g}$
NUCLEAR PHYSICS

147565 Calculate the energy released during the alpha decay of ${ }_{92}^{238} U=238$. Given the following data.
\({ }_{92}^{238} \mathrm{U}=238.05079 \mathrm{u},{ }_{90}^{234} \mathrm{Th}=234.04363 \mathrm{u}\)
${ }_{2}^{4} \mathrm{He}=4.00260 \mathrm{u}, 1 \mathrm{u}=931.5 \mathrm{MeV} / \mathrm{C}^{2}$.

1 $4.25 \mathrm{MeV}$
2 $3.75 \mathrm{MeV}$
3 $3.50 \mathrm{MeV}$
4 $2.75 \mathrm{MeV}$
NUCLEAR PHYSICS

147566 A radioactive element $A$ converts into another stable element B. Half life of $A$ is $\mathbf{1 . 5}$ hrs. After time $t$ the ratio of atoms of $A$ and $B$ is found to be $1: 8$, then $t$ in hours is-

1 6
2 8
3 Between 3 to 4.5
4 Between 4.5 to 6
NUCLEAR PHYSICS

147562 If a radioactive element having half-life of 30 min is undergoing beta decay, the fraction of radioactive element remains undecayed after $90 \mathrm{~min}$. will be

1 $\frac{1}{8}$
2 $\frac{1}{2}$
3 $\frac{1}{4}$
4 $\frac{1}{16}$
NUCLEAR PHYSICS

147564 A nuclear reactor delivers a power of $10^{9} \mathrm{~W}$, the amount of fuel consumed by the reactor in one hour is

1 $0.72 \mathrm{~g}$
2 $0.96 \mathrm{~g}$
3 $0.04 \mathrm{~g}$
4 $0.08 \mathrm{~g}$
NUCLEAR PHYSICS

147565 Calculate the energy released during the alpha decay of ${ }_{92}^{238} U=238$. Given the following data.
\({ }_{92}^{238} \mathrm{U}=238.05079 \mathrm{u},{ }_{90}^{234} \mathrm{Th}=234.04363 \mathrm{u}\)
${ }_{2}^{4} \mathrm{He}=4.00260 \mathrm{u}, 1 \mathrm{u}=931.5 \mathrm{MeV} / \mathrm{C}^{2}$.

1 $4.25 \mathrm{MeV}$
2 $3.75 \mathrm{MeV}$
3 $3.50 \mathrm{MeV}$
4 $2.75 \mathrm{MeV}$
NUCLEAR PHYSICS

147566 A radioactive element $A$ converts into another stable element B. Half life of $A$ is $\mathbf{1 . 5}$ hrs. After time $t$ the ratio of atoms of $A$ and $B$ is found to be $1: 8$, then $t$ in hours is-

1 6
2 8
3 Between 3 to 4.5
4 Between 4.5 to 6
NUCLEAR PHYSICS

147562 If a radioactive element having half-life of 30 min is undergoing beta decay, the fraction of radioactive element remains undecayed after $90 \mathrm{~min}$. will be

1 $\frac{1}{8}$
2 $\frac{1}{2}$
3 $\frac{1}{4}$
4 $\frac{1}{16}$
NUCLEAR PHYSICS

147564 A nuclear reactor delivers a power of $10^{9} \mathrm{~W}$, the amount of fuel consumed by the reactor in one hour is

1 $0.72 \mathrm{~g}$
2 $0.96 \mathrm{~g}$
3 $0.04 \mathrm{~g}$
4 $0.08 \mathrm{~g}$
NUCLEAR PHYSICS

147565 Calculate the energy released during the alpha decay of ${ }_{92}^{238} U=238$. Given the following data.
\({ }_{92}^{238} \mathrm{U}=238.05079 \mathrm{u},{ }_{90}^{234} \mathrm{Th}=234.04363 \mathrm{u}\)
${ }_{2}^{4} \mathrm{He}=4.00260 \mathrm{u}, 1 \mathrm{u}=931.5 \mathrm{MeV} / \mathrm{C}^{2}$.

1 $4.25 \mathrm{MeV}$
2 $3.75 \mathrm{MeV}$
3 $3.50 \mathrm{MeV}$
4 $2.75 \mathrm{MeV}$
NUCLEAR PHYSICS

147566 A radioactive element $A$ converts into another stable element B. Half life of $A$ is $\mathbf{1 . 5}$ hrs. After time $t$ the ratio of atoms of $A$ and $B$ is found to be $1: 8$, then $t$ in hours is-

1 6
2 8
3 Between 3 to 4.5
4 Between 4.5 to 6