Radioactivity
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
NUCLEAR PHYSICS

147567 Consider a radioactive isotope ${ }_{92} \mathrm{U}^{238}$ decays ${ }_{82} \mathrm{U}^{206}$ into in a series by emission of $n_{\alpha}$ number of alpha particles and $n_{\beta}$ number of beta particles. Then the values of $\mathbf{n}_{\alpha}$ and $\mathbf{n}_{\boldsymbol{\beta}}$ ?

1 $\mathrm{n}_{\alpha}=8, \mathrm{n}_{\beta}=8$
2 $\mathrm{n}_{\alpha}=6, \mathrm{n}_{\beta}=6$
3 $\mathrm{n}_{\alpha}=8, \mathrm{n}_{\beta}=6$
4 $\mathrm{n}_{\alpha}=6, \mathrm{n}_{\beta}=8$
NUCLEAR PHYSICS

147573 The half-life of a radioactive sample is 20 days this means that

1 the substance completely disintegrates in 40 days
2 the substance completely disintegrates in 80 days
3 $1 / 8$ part of the substance disintegrates in 60 days
4 $7 / 8$ part of the substance disintegrates in 60 days
NUCLEAR PHYSICS

147576 A sample of a radioactive element with initial mass of $32 \mathrm{~g}$ decayed to $\mathbf{4} \mathrm{g}$ in $\mathbf{4 2}$ minutes. How much of the original sample remained after first 14 minutes?

1 $16 \mathrm{~g}$
2 $24 \mathrm{~g}$
3 $12 \mathrm{~g}$
4 $8 \mathrm{~g}$
NUCLEAR PHYSICS

147578 A radioactive nucleus emits $4 \alpha$ particles and $7 \beta$ particles in succession. The ratio of number of neutrons to that of protons is $[A=$ mass number, $Z=$ atomic number]

1 $\frac{\mathrm{A}-\mathrm{Z}-13}{\mathrm{Z}-2}$
2 $\frac{\mathrm{A}-\mathrm{Z}-15}{\mathrm{Z}-1}$
3 $\frac{\mathrm{A}-\mathrm{Z}-11}{\mathrm{Z}-2}$
4 $\frac{\mathrm{A}-\mathrm{Z}-13}{\mathrm{Z}-1}$
NUCLEAR PHYSICS

147567 Consider a radioactive isotope ${ }_{92} \mathrm{U}^{238}$ decays ${ }_{82} \mathrm{U}^{206}$ into in a series by emission of $n_{\alpha}$ number of alpha particles and $n_{\beta}$ number of beta particles. Then the values of $\mathbf{n}_{\alpha}$ and $\mathbf{n}_{\boldsymbol{\beta}}$ ?

1 $\mathrm{n}_{\alpha}=8, \mathrm{n}_{\beta}=8$
2 $\mathrm{n}_{\alpha}=6, \mathrm{n}_{\beta}=6$
3 $\mathrm{n}_{\alpha}=8, \mathrm{n}_{\beta}=6$
4 $\mathrm{n}_{\alpha}=6, \mathrm{n}_{\beta}=8$
NUCLEAR PHYSICS

147573 The half-life of a radioactive sample is 20 days this means that

1 the substance completely disintegrates in 40 days
2 the substance completely disintegrates in 80 days
3 $1 / 8$ part of the substance disintegrates in 60 days
4 $7 / 8$ part of the substance disintegrates in 60 days
NUCLEAR PHYSICS

147576 A sample of a radioactive element with initial mass of $32 \mathrm{~g}$ decayed to $\mathbf{4} \mathrm{g}$ in $\mathbf{4 2}$ minutes. How much of the original sample remained after first 14 minutes?

1 $16 \mathrm{~g}$
2 $24 \mathrm{~g}$
3 $12 \mathrm{~g}$
4 $8 \mathrm{~g}$
NUCLEAR PHYSICS

147578 A radioactive nucleus emits $4 \alpha$ particles and $7 \beta$ particles in succession. The ratio of number of neutrons to that of protons is $[A=$ mass number, $Z=$ atomic number]

1 $\frac{\mathrm{A}-\mathrm{Z}-13}{\mathrm{Z}-2}$
2 $\frac{\mathrm{A}-\mathrm{Z}-15}{\mathrm{Z}-1}$
3 $\frac{\mathrm{A}-\mathrm{Z}-11}{\mathrm{Z}-2}$
4 $\frac{\mathrm{A}-\mathrm{Z}-13}{\mathrm{Z}-1}$
NUCLEAR PHYSICS

147567 Consider a radioactive isotope ${ }_{92} \mathrm{U}^{238}$ decays ${ }_{82} \mathrm{U}^{206}$ into in a series by emission of $n_{\alpha}$ number of alpha particles and $n_{\beta}$ number of beta particles. Then the values of $\mathbf{n}_{\alpha}$ and $\mathbf{n}_{\boldsymbol{\beta}}$ ?

1 $\mathrm{n}_{\alpha}=8, \mathrm{n}_{\beta}=8$
2 $\mathrm{n}_{\alpha}=6, \mathrm{n}_{\beta}=6$
3 $\mathrm{n}_{\alpha}=8, \mathrm{n}_{\beta}=6$
4 $\mathrm{n}_{\alpha}=6, \mathrm{n}_{\beta}=8$
NUCLEAR PHYSICS

147573 The half-life of a radioactive sample is 20 days this means that

1 the substance completely disintegrates in 40 days
2 the substance completely disintegrates in 80 days
3 $1 / 8$ part of the substance disintegrates in 60 days
4 $7 / 8$ part of the substance disintegrates in 60 days
NUCLEAR PHYSICS

147576 A sample of a radioactive element with initial mass of $32 \mathrm{~g}$ decayed to $\mathbf{4} \mathrm{g}$ in $\mathbf{4 2}$ minutes. How much of the original sample remained after first 14 minutes?

1 $16 \mathrm{~g}$
2 $24 \mathrm{~g}$
3 $12 \mathrm{~g}$
4 $8 \mathrm{~g}$
NUCLEAR PHYSICS

147578 A radioactive nucleus emits $4 \alpha$ particles and $7 \beta$ particles in succession. The ratio of number of neutrons to that of protons is $[A=$ mass number, $Z=$ atomic number]

1 $\frac{\mathrm{A}-\mathrm{Z}-13}{\mathrm{Z}-2}$
2 $\frac{\mathrm{A}-\mathrm{Z}-15}{\mathrm{Z}-1}$
3 $\frac{\mathrm{A}-\mathrm{Z}-11}{\mathrm{Z}-2}$
4 $\frac{\mathrm{A}-\mathrm{Z}-13}{\mathrm{Z}-1}$
NUCLEAR PHYSICS

147567 Consider a radioactive isotope ${ }_{92} \mathrm{U}^{238}$ decays ${ }_{82} \mathrm{U}^{206}$ into in a series by emission of $n_{\alpha}$ number of alpha particles and $n_{\beta}$ number of beta particles. Then the values of $\mathbf{n}_{\alpha}$ and $\mathbf{n}_{\boldsymbol{\beta}}$ ?

1 $\mathrm{n}_{\alpha}=8, \mathrm{n}_{\beta}=8$
2 $\mathrm{n}_{\alpha}=6, \mathrm{n}_{\beta}=6$
3 $\mathrm{n}_{\alpha}=8, \mathrm{n}_{\beta}=6$
4 $\mathrm{n}_{\alpha}=6, \mathrm{n}_{\beta}=8$
NUCLEAR PHYSICS

147573 The half-life of a radioactive sample is 20 days this means that

1 the substance completely disintegrates in 40 days
2 the substance completely disintegrates in 80 days
3 $1 / 8$ part of the substance disintegrates in 60 days
4 $7 / 8$ part of the substance disintegrates in 60 days
NUCLEAR PHYSICS

147576 A sample of a radioactive element with initial mass of $32 \mathrm{~g}$ decayed to $\mathbf{4} \mathrm{g}$ in $\mathbf{4 2}$ minutes. How much of the original sample remained after first 14 minutes?

1 $16 \mathrm{~g}$
2 $24 \mathrm{~g}$
3 $12 \mathrm{~g}$
4 $8 \mathrm{~g}$
NUCLEAR PHYSICS

147578 A radioactive nucleus emits $4 \alpha$ particles and $7 \beta$ particles in succession. The ratio of number of neutrons to that of protons is $[A=$ mass number, $Z=$ atomic number]

1 $\frac{\mathrm{A}-\mathrm{Z}-13}{\mathrm{Z}-2}$
2 $\frac{\mathrm{A}-\mathrm{Z}-15}{\mathrm{Z}-1}$
3 $\frac{\mathrm{A}-\mathrm{Z}-11}{\mathrm{Z}-2}$
4 $\frac{\mathrm{A}-\mathrm{Z}-13}{\mathrm{Z}-1}$