Nucleus (Atomic Number (Z), Atomic Mass (A), Isotopes, Isobars, Isostones)
NUCLEAR PHYSICS

147427 Atomic weight of boron is 10.81 and it has two isotopes ${ }_{5}^{10} B$ and ${ }_{5}^{11} B$. Then, the ratio of atoms of ${ }_{5}^{10} \mathrm{~B}$ and ${ }_{5}^{11} \mathrm{~B}$ in nature would be

1 19:81
2 $10: 11$
3 $15: 16$
4 $81: 19$
NUCLEAR PHYSICS

147428 In compound $X(n, \alpha) \rightarrow{ }_{3} \mathrm{Li}^{7}$, the element $X$ is

1 ${ }_{2} \mathrm{He}^{4}$
2 ${ }_{5} \mathrm{~B}^{10}$
3 ${ }_{5} \mathrm{~B}^{9}$
4 ${ }_{4} \mathrm{~B}^{11}$
NUCLEAR PHYSICS

147430 The volume occupied by an atom is greater than the volume of the nucleus by factor of about

1 $10^{10}$
2 $10^{15}$
3 $10^{1}$
4 $10^{5}$
NUCLEAR PHYSICS

147431 If radius of the ${ }_{13}^{27} \mathrm{Al}$ nucleus is taken to be $\mathbf{R}_{\mathrm{Al}}$, then the radius of ${ }_{53}^{125} \mathrm{Te}$ nucleus is nearly

1 $\left(\frac{53}{13}\right)^{1 / 3} \mathrm{R}_{\mathrm{Al}}$
2 $\frac{5}{3} \mathrm{R}_{\mathrm{Al}}$
3 $\frac{3}{5} \mathrm{R}_{\mathrm{Al}}$
4 $\left(\frac{13}{53}\right)^{1 / 3} \mathrm{R}_{\mathrm{Al}}$
NUCLEAR PHYSICS

147427 Atomic weight of boron is 10.81 and it has two isotopes ${ }_{5}^{10} B$ and ${ }_{5}^{11} B$. Then, the ratio of atoms of ${ }_{5}^{10} \mathrm{~B}$ and ${ }_{5}^{11} \mathrm{~B}$ in nature would be

1 19:81
2 $10: 11$
3 $15: 16$
4 $81: 19$
NUCLEAR PHYSICS

147428 In compound $X(n, \alpha) \rightarrow{ }_{3} \mathrm{Li}^{7}$, the element $X$ is

1 ${ }_{2} \mathrm{He}^{4}$
2 ${ }_{5} \mathrm{~B}^{10}$
3 ${ }_{5} \mathrm{~B}^{9}$
4 ${ }_{4} \mathrm{~B}^{11}$
NUCLEAR PHYSICS

147430 The volume occupied by an atom is greater than the volume of the nucleus by factor of about

1 $10^{10}$
2 $10^{15}$
3 $10^{1}$
4 $10^{5}$
NUCLEAR PHYSICS

147431 If radius of the ${ }_{13}^{27} \mathrm{Al}$ nucleus is taken to be $\mathbf{R}_{\mathrm{Al}}$, then the radius of ${ }_{53}^{125} \mathrm{Te}$ nucleus is nearly

1 $\left(\frac{53}{13}\right)^{1 / 3} \mathrm{R}_{\mathrm{Al}}$
2 $\frac{5}{3} \mathrm{R}_{\mathrm{Al}}$
3 $\frac{3}{5} \mathrm{R}_{\mathrm{Al}}$
4 $\left(\frac{13}{53}\right)^{1 / 3} \mathrm{R}_{\mathrm{Al}}$
NUCLEAR PHYSICS

147427 Atomic weight of boron is 10.81 and it has two isotopes ${ }_{5}^{10} B$ and ${ }_{5}^{11} B$. Then, the ratio of atoms of ${ }_{5}^{10} \mathrm{~B}$ and ${ }_{5}^{11} \mathrm{~B}$ in nature would be

1 19:81
2 $10: 11$
3 $15: 16$
4 $81: 19$
NUCLEAR PHYSICS

147428 In compound $X(n, \alpha) \rightarrow{ }_{3} \mathrm{Li}^{7}$, the element $X$ is

1 ${ }_{2} \mathrm{He}^{4}$
2 ${ }_{5} \mathrm{~B}^{10}$
3 ${ }_{5} \mathrm{~B}^{9}$
4 ${ }_{4} \mathrm{~B}^{11}$
NUCLEAR PHYSICS

147430 The volume occupied by an atom is greater than the volume of the nucleus by factor of about

1 $10^{10}$
2 $10^{15}$
3 $10^{1}$
4 $10^{5}$
NUCLEAR PHYSICS

147431 If radius of the ${ }_{13}^{27} \mathrm{Al}$ nucleus is taken to be $\mathbf{R}_{\mathrm{Al}}$, then the radius of ${ }_{53}^{125} \mathrm{Te}$ nucleus is nearly

1 $\left(\frac{53}{13}\right)^{1 / 3} \mathrm{R}_{\mathrm{Al}}$
2 $\frac{5}{3} \mathrm{R}_{\mathrm{Al}}$
3 $\frac{3}{5} \mathrm{R}_{\mathrm{Al}}$
4 $\left(\frac{13}{53}\right)^{1 / 3} \mathrm{R}_{\mathrm{Al}}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
NUCLEAR PHYSICS

147427 Atomic weight of boron is 10.81 and it has two isotopes ${ }_{5}^{10} B$ and ${ }_{5}^{11} B$. Then, the ratio of atoms of ${ }_{5}^{10} \mathrm{~B}$ and ${ }_{5}^{11} \mathrm{~B}$ in nature would be

1 19:81
2 $10: 11$
3 $15: 16$
4 $81: 19$
NUCLEAR PHYSICS

147428 In compound $X(n, \alpha) \rightarrow{ }_{3} \mathrm{Li}^{7}$, the element $X$ is

1 ${ }_{2} \mathrm{He}^{4}$
2 ${ }_{5} \mathrm{~B}^{10}$
3 ${ }_{5} \mathrm{~B}^{9}$
4 ${ }_{4} \mathrm{~B}^{11}$
NUCLEAR PHYSICS

147430 The volume occupied by an atom is greater than the volume of the nucleus by factor of about

1 $10^{10}$
2 $10^{15}$
3 $10^{1}$
4 $10^{5}$
NUCLEAR PHYSICS

147431 If radius of the ${ }_{13}^{27} \mathrm{Al}$ nucleus is taken to be $\mathbf{R}_{\mathrm{Al}}$, then the radius of ${ }_{53}^{125} \mathrm{Te}$ nucleus is nearly

1 $\left(\frac{53}{13}\right)^{1 / 3} \mathrm{R}_{\mathrm{Al}}$
2 $\frac{5}{3} \mathrm{R}_{\mathrm{Al}}$
3 $\frac{3}{5} \mathrm{R}_{\mathrm{Al}}$
4 $\left(\frac{13}{53}\right)^{1 / 3} \mathrm{R}_{\mathrm{Al}}$