147432
The energy equivalent of one atomic mass unit is
#[Qdiff: Hard, QCat: Numerical Based, examname: AIPMT- 2003, $\mathrm{m}=1 \mathrm{AMU}=1.66 \times 10^{-27} \mathrm{~kg}$
, $\mathrm{E}=1.66 \times 10^{-27} \times\left(3 \times 10^{8}\right)^{2}$
, $\mathrm{E}=14.94 \times 10^{-11} \mathrm{~J}$
, $\mathrm{E}=\frac{14.94 \times 10^{-11}}{1.6 \times 10^{-19}} \mathrm{eV}$
, $\mathrm{E} = 931 \times 10^{6} \mathrm{eV} \quad\left(\because 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}\right)$
, $\mathrm{E} = 931 \mathrm{MeV}$
, 96. The mass of proton is $\mathbf{1 . 0 0 7 3} u$ and that of neutron is $1.0087 \mathrm{u}(\mathrm{u}=$ atomic mass unit) The binding energy of ${ }_{2} \mathrm{He}^{4}$ is (mass of helium nucleus $=4.0015 \mathrm{u}$ )
, (a) $28.4 \mathrm{MeV}$
, (c) $0.0305 \mathrm{~J}$
, (b) $0.061 \mathrm{u}$
, (d) $0.0305 \mathrm{erg}$
, J and K CET- 1999]#
147432
The energy equivalent of one atomic mass unit is
#[Qdiff: Hard, QCat: Numerical Based, examname: AIPMT- 2003, $\mathrm{m}=1 \mathrm{AMU}=1.66 \times 10^{-27} \mathrm{~kg}$
, $\mathrm{E}=1.66 \times 10^{-27} \times\left(3 \times 10^{8}\right)^{2}$
, $\mathrm{E}=14.94 \times 10^{-11} \mathrm{~J}$
, $\mathrm{E}=\frac{14.94 \times 10^{-11}}{1.6 \times 10^{-19}} \mathrm{eV}$
, $\mathrm{E} = 931 \times 10^{6} \mathrm{eV} \quad\left(\because 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}\right)$
, $\mathrm{E} = 931 \mathrm{MeV}$
, 96. The mass of proton is $\mathbf{1 . 0 0 7 3} u$ and that of neutron is $1.0087 \mathrm{u}(\mathrm{u}=$ atomic mass unit) The binding energy of ${ }_{2} \mathrm{He}^{4}$ is (mass of helium nucleus $=4.0015 \mathrm{u}$ )
, (a) $28.4 \mathrm{MeV}$
, (c) $0.0305 \mathrm{~J}$
, (b) $0.061 \mathrm{u}$
, (d) $0.0305 \mathrm{erg}$
, J and K CET- 1999]#
147432
The energy equivalent of one atomic mass unit is
#[Qdiff: Hard, QCat: Numerical Based, examname: AIPMT- 2003, $\mathrm{m}=1 \mathrm{AMU}=1.66 \times 10^{-27} \mathrm{~kg}$
, $\mathrm{E}=1.66 \times 10^{-27} \times\left(3 \times 10^{8}\right)^{2}$
, $\mathrm{E}=14.94 \times 10^{-11} \mathrm{~J}$
, $\mathrm{E}=\frac{14.94 \times 10^{-11}}{1.6 \times 10^{-19}} \mathrm{eV}$
, $\mathrm{E} = 931 \times 10^{6} \mathrm{eV} \quad\left(\because 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}\right)$
, $\mathrm{E} = 931 \mathrm{MeV}$
, 96. The mass of proton is $\mathbf{1 . 0 0 7 3} u$ and that of neutron is $1.0087 \mathrm{u}(\mathrm{u}=$ atomic mass unit) The binding energy of ${ }_{2} \mathrm{He}^{4}$ is (mass of helium nucleus $=4.0015 \mathrm{u}$ )
, (a) $28.4 \mathrm{MeV}$
, (c) $0.0305 \mathrm{~J}$
, (b) $0.061 \mathrm{u}$
, (d) $0.0305 \mathrm{erg}$
, J and K CET- 1999]#
147432
The energy equivalent of one atomic mass unit is
#[Qdiff: Hard, QCat: Numerical Based, examname: AIPMT- 2003, $\mathrm{m}=1 \mathrm{AMU}=1.66 \times 10^{-27} \mathrm{~kg}$
, $\mathrm{E}=1.66 \times 10^{-27} \times\left(3 \times 10^{8}\right)^{2}$
, $\mathrm{E}=14.94 \times 10^{-11} \mathrm{~J}$
, $\mathrm{E}=\frac{14.94 \times 10^{-11}}{1.6 \times 10^{-19}} \mathrm{eV}$
, $\mathrm{E} = 931 \times 10^{6} \mathrm{eV} \quad\left(\because 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}\right)$
, $\mathrm{E} = 931 \mathrm{MeV}$
, 96. The mass of proton is $\mathbf{1 . 0 0 7 3} u$ and that of neutron is $1.0087 \mathrm{u}(\mathrm{u}=$ atomic mass unit) The binding energy of ${ }_{2} \mathrm{He}^{4}$ is (mass of helium nucleus $=4.0015 \mathrm{u}$ )
, (a) $28.4 \mathrm{MeV}$
, (c) $0.0305 \mathrm{~J}$
, (b) $0.061 \mathrm{u}$
, (d) $0.0305 \mathrm{erg}$
, J and K CET- 1999]#