Nucleus (Atomic Number (Z), Atomic Mass (A), Isotopes, Isobars, Isostones)
NUCLEAR PHYSICS

147421 What is the energy equivalence to $1 \mathrm{~g}$ of coal?

1 $9 \times 10^{10} \mathrm{~J}$
2 $8 \times 10^{11} \mathrm{~J}$
3 $9 \times 10^{12} \mathrm{~J}$
4 $9 \times 10^{13} \mathrm{~J}$
NUCLEAR PHYSICS

147422 $\quad m_{p}$ and $m_{n}$ are masses of proton and neutron respectively. An element of mass $m$ has $Z$ protons and $N$ neutrons, then

1 $\mathrm{m}>\mathrm{Zm}_{\mathrm{p}}+\mathrm{Nm}_{\mathrm{n}}$
2 $\mathrm{m}=\mathrm{Zm}_{\mathrm{p}}+\mathrm{Nm}_{\mathrm{n}}$
3 $\mathrm{m} \lt \mathrm{Zm}_{\mathrm{p}}+\mathrm{Nm}_{\mathrm{n}}$
4 m may be greater than, less than or equal to $\mathrm{Zm}_{\mathrm{p}}+\mathrm{Nm}_{\mathrm{n}}$, depending on nature of element
NUCLEAR PHYSICS

147423 The nuclei ${ }_{6} \mathrm{C}^{13}$ and ${ }_{7} \mathrm{~N}^{14}$ can be described as

1 Isotones
2 Isobars
3 Isotopes of carbon
4 Isotopes of nitrogen
NUCLEAR PHYSICS

147437 When two deuterium nuclei fuse together to form tritium, we get a

1 neutron
2 proton
3 $\alpha$-particle
4 deuteron
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
NUCLEAR PHYSICS

147421 What is the energy equivalence to $1 \mathrm{~g}$ of coal?

1 $9 \times 10^{10} \mathrm{~J}$
2 $8 \times 10^{11} \mathrm{~J}$
3 $9 \times 10^{12} \mathrm{~J}$
4 $9 \times 10^{13} \mathrm{~J}$
NUCLEAR PHYSICS

147422 $\quad m_{p}$ and $m_{n}$ are masses of proton and neutron respectively. An element of mass $m$ has $Z$ protons and $N$ neutrons, then

1 $\mathrm{m}>\mathrm{Zm}_{\mathrm{p}}+\mathrm{Nm}_{\mathrm{n}}$
2 $\mathrm{m}=\mathrm{Zm}_{\mathrm{p}}+\mathrm{Nm}_{\mathrm{n}}$
3 $\mathrm{m} \lt \mathrm{Zm}_{\mathrm{p}}+\mathrm{Nm}_{\mathrm{n}}$
4 m may be greater than, less than or equal to $\mathrm{Zm}_{\mathrm{p}}+\mathrm{Nm}_{\mathrm{n}}$, depending on nature of element
NUCLEAR PHYSICS

147423 The nuclei ${ }_{6} \mathrm{C}^{13}$ and ${ }_{7} \mathrm{~N}^{14}$ can be described as

1 Isotones
2 Isobars
3 Isotopes of carbon
4 Isotopes of nitrogen
NUCLEAR PHYSICS

147437 When two deuterium nuclei fuse together to form tritium, we get a

1 neutron
2 proton
3 $\alpha$-particle
4 deuteron
NUCLEAR PHYSICS

147421 What is the energy equivalence to $1 \mathrm{~g}$ of coal?

1 $9 \times 10^{10} \mathrm{~J}$
2 $8 \times 10^{11} \mathrm{~J}$
3 $9 \times 10^{12} \mathrm{~J}$
4 $9 \times 10^{13} \mathrm{~J}$
NUCLEAR PHYSICS

147422 $\quad m_{p}$ and $m_{n}$ are masses of proton and neutron respectively. An element of mass $m$ has $Z$ protons and $N$ neutrons, then

1 $\mathrm{m}>\mathrm{Zm}_{\mathrm{p}}+\mathrm{Nm}_{\mathrm{n}}$
2 $\mathrm{m}=\mathrm{Zm}_{\mathrm{p}}+\mathrm{Nm}_{\mathrm{n}}$
3 $\mathrm{m} \lt \mathrm{Zm}_{\mathrm{p}}+\mathrm{Nm}_{\mathrm{n}}$
4 m may be greater than, less than or equal to $\mathrm{Zm}_{\mathrm{p}}+\mathrm{Nm}_{\mathrm{n}}$, depending on nature of element
NUCLEAR PHYSICS

147423 The nuclei ${ }_{6} \mathrm{C}^{13}$ and ${ }_{7} \mathrm{~N}^{14}$ can be described as

1 Isotones
2 Isobars
3 Isotopes of carbon
4 Isotopes of nitrogen
NUCLEAR PHYSICS

147437 When two deuterium nuclei fuse together to form tritium, we get a

1 neutron
2 proton
3 $\alpha$-particle
4 deuteron
NUCLEAR PHYSICS

147421 What is the energy equivalence to $1 \mathrm{~g}$ of coal?

1 $9 \times 10^{10} \mathrm{~J}$
2 $8 \times 10^{11} \mathrm{~J}$
3 $9 \times 10^{12} \mathrm{~J}$
4 $9 \times 10^{13} \mathrm{~J}$
NUCLEAR PHYSICS

147422 $\quad m_{p}$ and $m_{n}$ are masses of proton and neutron respectively. An element of mass $m$ has $Z$ protons and $N$ neutrons, then

1 $\mathrm{m}>\mathrm{Zm}_{\mathrm{p}}+\mathrm{Nm}_{\mathrm{n}}$
2 $\mathrm{m}=\mathrm{Zm}_{\mathrm{p}}+\mathrm{Nm}_{\mathrm{n}}$
3 $\mathrm{m} \lt \mathrm{Zm}_{\mathrm{p}}+\mathrm{Nm}_{\mathrm{n}}$
4 m may be greater than, less than or equal to $\mathrm{Zm}_{\mathrm{p}}+\mathrm{Nm}_{\mathrm{n}}$, depending on nature of element
NUCLEAR PHYSICS

147423 The nuclei ${ }_{6} \mathrm{C}^{13}$ and ${ }_{7} \mathrm{~N}^{14}$ can be described as

1 Isotones
2 Isobars
3 Isotopes of carbon
4 Isotopes of nitrogen
NUCLEAR PHYSICS

147437 When two deuterium nuclei fuse together to form tritium, we get a

1 neutron
2 proton
3 $\alpha$-particle
4 deuteron