Wave Nature Of Light Of Matter (de-Broglie)
Dual nature of radiation and Matter

142560 Electrons of mass $m$ with de-Broglie wavelength
$\lambda$ fall on the target in an X-ray tube. The cutoff wavelength $\left(\lambda_{0}\right)$ of the emitted $X$-rays is

1 $\lambda_{0}=\frac{2 \mathrm{mc} \lambda^{2}}{\mathrm{~h}}$
2 $\lambda_{0}=\frac{2 \mathrm{~h}}{\mathrm{mc}}$
3 $\lambda_{0}=\frac{2 \mathrm{~m}^{2} \mathrm{c}^{2} \lambda^{3}}{\mathrm{~h}^{2}}$
4 $\lambda_{0}=\lambda$
Dual nature of radiation and Matter

142561 If the kinetic energy of the particle is increased to 16 times its previous value, the percentage change in the de-Broglie wavelength of the particle is

1 25
2 75
3 60
4 50
Dual nature of radiation and Matter

142563 The energy of a photon of light is $3 \mathrm{eV}$. Then the wavelength of photon must be

1 $4125 \mathrm{~nm}$
2 $412.5 \mathrm{~nm}$
3 $41250 \mathrm{~nm}$
4 $4 \mathrm{~nm}$
Dual nature of radiation and Matter

142566 A $200 \mathrm{~W}$ sodium street lamp emits yellow light of wavelength $0.6 \mu \mathrm{m}$. Assuming it to be $25 \%$ efficient in converting electrical energy to light, the number of photons of yellow light it emits per second is

1 $1.5 \times 10^{20}$
2 $6 \times 10^{18}$
3 $62 \times 10^{20}$
4 $3 \times 10^{19}$
Dual nature of radiation and Matter

142560 Electrons of mass $m$ with de-Broglie wavelength
$\lambda$ fall on the target in an X-ray tube. The cutoff wavelength $\left(\lambda_{0}\right)$ of the emitted $X$-rays is

1 $\lambda_{0}=\frac{2 \mathrm{mc} \lambda^{2}}{\mathrm{~h}}$
2 $\lambda_{0}=\frac{2 \mathrm{~h}}{\mathrm{mc}}$
3 $\lambda_{0}=\frac{2 \mathrm{~m}^{2} \mathrm{c}^{2} \lambda^{3}}{\mathrm{~h}^{2}}$
4 $\lambda_{0}=\lambda$
Dual nature of radiation and Matter

142561 If the kinetic energy of the particle is increased to 16 times its previous value, the percentage change in the de-Broglie wavelength of the particle is

1 25
2 75
3 60
4 50
Dual nature of radiation and Matter

142563 The energy of a photon of light is $3 \mathrm{eV}$. Then the wavelength of photon must be

1 $4125 \mathrm{~nm}$
2 $412.5 \mathrm{~nm}$
3 $41250 \mathrm{~nm}$
4 $4 \mathrm{~nm}$
Dual nature of radiation and Matter

142566 A $200 \mathrm{~W}$ sodium street lamp emits yellow light of wavelength $0.6 \mu \mathrm{m}$. Assuming it to be $25 \%$ efficient in converting electrical energy to light, the number of photons of yellow light it emits per second is

1 $1.5 \times 10^{20}$
2 $6 \times 10^{18}$
3 $62 \times 10^{20}$
4 $3 \times 10^{19}$
Dual nature of radiation and Matter

142560 Electrons of mass $m$ with de-Broglie wavelength
$\lambda$ fall on the target in an X-ray tube. The cutoff wavelength $\left(\lambda_{0}\right)$ of the emitted $X$-rays is

1 $\lambda_{0}=\frac{2 \mathrm{mc} \lambda^{2}}{\mathrm{~h}}$
2 $\lambda_{0}=\frac{2 \mathrm{~h}}{\mathrm{mc}}$
3 $\lambda_{0}=\frac{2 \mathrm{~m}^{2} \mathrm{c}^{2} \lambda^{3}}{\mathrm{~h}^{2}}$
4 $\lambda_{0}=\lambda$
Dual nature of radiation and Matter

142561 If the kinetic energy of the particle is increased to 16 times its previous value, the percentage change in the de-Broglie wavelength of the particle is

1 25
2 75
3 60
4 50
Dual nature of radiation and Matter

142563 The energy of a photon of light is $3 \mathrm{eV}$. Then the wavelength of photon must be

1 $4125 \mathrm{~nm}$
2 $412.5 \mathrm{~nm}$
3 $41250 \mathrm{~nm}$
4 $4 \mathrm{~nm}$
Dual nature of radiation and Matter

142566 A $200 \mathrm{~W}$ sodium street lamp emits yellow light of wavelength $0.6 \mu \mathrm{m}$. Assuming it to be $25 \%$ efficient in converting electrical energy to light, the number of photons of yellow light it emits per second is

1 $1.5 \times 10^{20}$
2 $6 \times 10^{18}$
3 $62 \times 10^{20}$
4 $3 \times 10^{19}$
Dual nature of radiation and Matter

142560 Electrons of mass $m$ with de-Broglie wavelength
$\lambda$ fall on the target in an X-ray tube. The cutoff wavelength $\left(\lambda_{0}\right)$ of the emitted $X$-rays is

1 $\lambda_{0}=\frac{2 \mathrm{mc} \lambda^{2}}{\mathrm{~h}}$
2 $\lambda_{0}=\frac{2 \mathrm{~h}}{\mathrm{mc}}$
3 $\lambda_{0}=\frac{2 \mathrm{~m}^{2} \mathrm{c}^{2} \lambda^{3}}{\mathrm{~h}^{2}}$
4 $\lambda_{0}=\lambda$
Dual nature of radiation and Matter

142561 If the kinetic energy of the particle is increased to 16 times its previous value, the percentage change in the de-Broglie wavelength of the particle is

1 25
2 75
3 60
4 50
Dual nature of radiation and Matter

142563 The energy of a photon of light is $3 \mathrm{eV}$. Then the wavelength of photon must be

1 $4125 \mathrm{~nm}$
2 $412.5 \mathrm{~nm}$
3 $41250 \mathrm{~nm}$
4 $4 \mathrm{~nm}$
Dual nature of radiation and Matter

142566 A $200 \mathrm{~W}$ sodium street lamp emits yellow light of wavelength $0.6 \mu \mathrm{m}$. Assuming it to be $25 \%$ efficient in converting electrical energy to light, the number of photons of yellow light it emits per second is

1 $1.5 \times 10^{20}$
2 $6 \times 10^{18}$
3 $62 \times 10^{20}$
4 $3 \times 10^{19}$