142511
For the hydrogen atom, the energy of radiation emitted in the transition from $4^{\text {th }}$ excited state to $2^{\text {nd }}$ excited state, according to Bohr's theory is
1 $0.567 \mathrm{eV}$
2 $0.667 \mathrm{eV}$
3 $0.967 \mathrm{eV}$
4 $1.267 \mathrm{eV}$
Explanation:
C We know that, Energy in the $\mathrm{n}^{\text {th }}$ orbit $\left(\mathrm{E}_{\mathrm{n}}\right)=\frac{-13.6}{\mathrm{n}^{2}} \mathrm{eV}$ For $4^{\text {th }}$ excited state, $n=5$ and $2^{\text {nd }}$ excited state, $n=3$ $\mathrm{E}_{5}-\mathrm{E}_{3}=\left(\frac{1}{9}-\frac{1}{25}\right) \times 13.6 \mathrm{eV}=0.967 \mathrm{eV}$
MHT-CET 2015
Dual nature of radiation and Matter
142512
The de-Broglie wavelength ' $\lambda$ ' of a particle
1 is proportional to mass
2 is proportional to impulse
3 is inversely proportional to impulse
4 does not depend on impulse
Explanation:
C According to the de-Broglie wavelength - $\lambda=\frac{\mathrm{h}}{\mathrm{p}}$ So, $\quad \lambda \propto \frac{1}{\mathrm{p}}$ Where, Impulse $=\Delta \mathrm{p}=\mathrm{p}$ If initial momentum is zero.
MHT-CET 2016
Dual nature of radiation and Matter
142517
What is the angular momentum of an electron in the fourth orbit of Bohr's model of hydrogen atom?
1 $\frac{\mathrm{h}}{2 \pi}$
2 $\frac{2 \mathrm{~h}}{\pi}$
3 $\mathrm{h}$
4 $\frac{\mathrm{h}}{4 \pi}$
Explanation:
B The angular momentum in any stationary orbit is $=\operatorname{mvr}=\frac{\mathrm{nh}}{2 \pi}$ For $(\mathrm{n}=4)$ (Given) Fourth orbit $=\frac{4 h}{2 \pi}=\frac{2 h}{\pi}$
VITEEE-2006
Dual nature of radiation and Matter
142524
The de Broglie wavelength associated with a particle moving with momentum (p) and mass (m) is
1 $\frac{\mathrm{h}}{\mathrm{p}}$
2 $\frac{\mathrm{h}}{\mathrm{mp}}$
3 $\frac{\mathrm{h}}{\mathrm{P}^{2}}$
4 $\frac{\mathrm{h}}{\mathrm{p}^{2}}$
Explanation:
A de Broglie wavelength $\lambda=\frac{\mathrm{h}}{\mathrm{mv}}$ $\lambda=\frac{\mathrm{h}}{\mathrm{p}}$ Where, $\mathrm{p}=$ momentum $\mathrm{h}=$ Planck's Constant
142511
For the hydrogen atom, the energy of radiation emitted in the transition from $4^{\text {th }}$ excited state to $2^{\text {nd }}$ excited state, according to Bohr's theory is
1 $0.567 \mathrm{eV}$
2 $0.667 \mathrm{eV}$
3 $0.967 \mathrm{eV}$
4 $1.267 \mathrm{eV}$
Explanation:
C We know that, Energy in the $\mathrm{n}^{\text {th }}$ orbit $\left(\mathrm{E}_{\mathrm{n}}\right)=\frac{-13.6}{\mathrm{n}^{2}} \mathrm{eV}$ For $4^{\text {th }}$ excited state, $n=5$ and $2^{\text {nd }}$ excited state, $n=3$ $\mathrm{E}_{5}-\mathrm{E}_{3}=\left(\frac{1}{9}-\frac{1}{25}\right) \times 13.6 \mathrm{eV}=0.967 \mathrm{eV}$
MHT-CET 2015
Dual nature of radiation and Matter
142512
The de-Broglie wavelength ' $\lambda$ ' of a particle
1 is proportional to mass
2 is proportional to impulse
3 is inversely proportional to impulse
4 does not depend on impulse
Explanation:
C According to the de-Broglie wavelength - $\lambda=\frac{\mathrm{h}}{\mathrm{p}}$ So, $\quad \lambda \propto \frac{1}{\mathrm{p}}$ Where, Impulse $=\Delta \mathrm{p}=\mathrm{p}$ If initial momentum is zero.
MHT-CET 2016
Dual nature of radiation and Matter
142517
What is the angular momentum of an electron in the fourth orbit of Bohr's model of hydrogen atom?
1 $\frac{\mathrm{h}}{2 \pi}$
2 $\frac{2 \mathrm{~h}}{\pi}$
3 $\mathrm{h}$
4 $\frac{\mathrm{h}}{4 \pi}$
Explanation:
B The angular momentum in any stationary orbit is $=\operatorname{mvr}=\frac{\mathrm{nh}}{2 \pi}$ For $(\mathrm{n}=4)$ (Given) Fourth orbit $=\frac{4 h}{2 \pi}=\frac{2 h}{\pi}$
VITEEE-2006
Dual nature of radiation and Matter
142524
The de Broglie wavelength associated with a particle moving with momentum (p) and mass (m) is
1 $\frac{\mathrm{h}}{\mathrm{p}}$
2 $\frac{\mathrm{h}}{\mathrm{mp}}$
3 $\frac{\mathrm{h}}{\mathrm{P}^{2}}$
4 $\frac{\mathrm{h}}{\mathrm{p}^{2}}$
Explanation:
A de Broglie wavelength $\lambda=\frac{\mathrm{h}}{\mathrm{mv}}$ $\lambda=\frac{\mathrm{h}}{\mathrm{p}}$ Where, $\mathrm{p}=$ momentum $\mathrm{h}=$ Planck's Constant
142511
For the hydrogen atom, the energy of radiation emitted in the transition from $4^{\text {th }}$ excited state to $2^{\text {nd }}$ excited state, according to Bohr's theory is
1 $0.567 \mathrm{eV}$
2 $0.667 \mathrm{eV}$
3 $0.967 \mathrm{eV}$
4 $1.267 \mathrm{eV}$
Explanation:
C We know that, Energy in the $\mathrm{n}^{\text {th }}$ orbit $\left(\mathrm{E}_{\mathrm{n}}\right)=\frac{-13.6}{\mathrm{n}^{2}} \mathrm{eV}$ For $4^{\text {th }}$ excited state, $n=5$ and $2^{\text {nd }}$ excited state, $n=3$ $\mathrm{E}_{5}-\mathrm{E}_{3}=\left(\frac{1}{9}-\frac{1}{25}\right) \times 13.6 \mathrm{eV}=0.967 \mathrm{eV}$
MHT-CET 2015
Dual nature of radiation and Matter
142512
The de-Broglie wavelength ' $\lambda$ ' of a particle
1 is proportional to mass
2 is proportional to impulse
3 is inversely proportional to impulse
4 does not depend on impulse
Explanation:
C According to the de-Broglie wavelength - $\lambda=\frac{\mathrm{h}}{\mathrm{p}}$ So, $\quad \lambda \propto \frac{1}{\mathrm{p}}$ Where, Impulse $=\Delta \mathrm{p}=\mathrm{p}$ If initial momentum is zero.
MHT-CET 2016
Dual nature of radiation and Matter
142517
What is the angular momentum of an electron in the fourth orbit of Bohr's model of hydrogen atom?
1 $\frac{\mathrm{h}}{2 \pi}$
2 $\frac{2 \mathrm{~h}}{\pi}$
3 $\mathrm{h}$
4 $\frac{\mathrm{h}}{4 \pi}$
Explanation:
B The angular momentum in any stationary orbit is $=\operatorname{mvr}=\frac{\mathrm{nh}}{2 \pi}$ For $(\mathrm{n}=4)$ (Given) Fourth orbit $=\frac{4 h}{2 \pi}=\frac{2 h}{\pi}$
VITEEE-2006
Dual nature of radiation and Matter
142524
The de Broglie wavelength associated with a particle moving with momentum (p) and mass (m) is
1 $\frac{\mathrm{h}}{\mathrm{p}}$
2 $\frac{\mathrm{h}}{\mathrm{mp}}$
3 $\frac{\mathrm{h}}{\mathrm{P}^{2}}$
4 $\frac{\mathrm{h}}{\mathrm{p}^{2}}$
Explanation:
A de Broglie wavelength $\lambda=\frac{\mathrm{h}}{\mathrm{mv}}$ $\lambda=\frac{\mathrm{h}}{\mathrm{p}}$ Where, $\mathrm{p}=$ momentum $\mathrm{h}=$ Planck's Constant
142511
For the hydrogen atom, the energy of radiation emitted in the transition from $4^{\text {th }}$ excited state to $2^{\text {nd }}$ excited state, according to Bohr's theory is
1 $0.567 \mathrm{eV}$
2 $0.667 \mathrm{eV}$
3 $0.967 \mathrm{eV}$
4 $1.267 \mathrm{eV}$
Explanation:
C We know that, Energy in the $\mathrm{n}^{\text {th }}$ orbit $\left(\mathrm{E}_{\mathrm{n}}\right)=\frac{-13.6}{\mathrm{n}^{2}} \mathrm{eV}$ For $4^{\text {th }}$ excited state, $n=5$ and $2^{\text {nd }}$ excited state, $n=3$ $\mathrm{E}_{5}-\mathrm{E}_{3}=\left(\frac{1}{9}-\frac{1}{25}\right) \times 13.6 \mathrm{eV}=0.967 \mathrm{eV}$
MHT-CET 2015
Dual nature of radiation and Matter
142512
The de-Broglie wavelength ' $\lambda$ ' of a particle
1 is proportional to mass
2 is proportional to impulse
3 is inversely proportional to impulse
4 does not depend on impulse
Explanation:
C According to the de-Broglie wavelength - $\lambda=\frac{\mathrm{h}}{\mathrm{p}}$ So, $\quad \lambda \propto \frac{1}{\mathrm{p}}$ Where, Impulse $=\Delta \mathrm{p}=\mathrm{p}$ If initial momentum is zero.
MHT-CET 2016
Dual nature of radiation and Matter
142517
What is the angular momentum of an electron in the fourth orbit of Bohr's model of hydrogen atom?
1 $\frac{\mathrm{h}}{2 \pi}$
2 $\frac{2 \mathrm{~h}}{\pi}$
3 $\mathrm{h}$
4 $\frac{\mathrm{h}}{4 \pi}$
Explanation:
B The angular momentum in any stationary orbit is $=\operatorname{mvr}=\frac{\mathrm{nh}}{2 \pi}$ For $(\mathrm{n}=4)$ (Given) Fourth orbit $=\frac{4 h}{2 \pi}=\frac{2 h}{\pi}$
VITEEE-2006
Dual nature of radiation and Matter
142524
The de Broglie wavelength associated with a particle moving with momentum (p) and mass (m) is
1 $\frac{\mathrm{h}}{\mathrm{p}}$
2 $\frac{\mathrm{h}}{\mathrm{mp}}$
3 $\frac{\mathrm{h}}{\mathrm{P}^{2}}$
4 $\frac{\mathrm{h}}{\mathrm{p}^{2}}$
Explanation:
A de Broglie wavelength $\lambda=\frac{\mathrm{h}}{\mathrm{mv}}$ $\lambda=\frac{\mathrm{h}}{\mathrm{p}}$ Where, $\mathrm{p}=$ momentum $\mathrm{h}=$ Planck's Constant