Wave Nature Of Light Of Matter (de-Broglie)
Dual nature of radiation and Matter

142526 According to the quantum theory of radiation, the momentum (p) of a photon is related to its frequency (f), wavelength $(\lambda)$ and the speed of light (c) by the relation

1 $\mathrm{p}=\frac{\mathrm{h}}{\lambda}$
2 $p=h \lambda$
3 $\mathrm{p}=\mathrm{hf}$
4 $\mathrm{p}=\frac{\mathrm{h}}{\mathrm{c}}$
Dual nature of radiation and Matter

142534 The momentum of a photon in an X-ray beam of $10^{-10} \mathrm{~m}$ wavelength is

1 $1.5 \times 10^{-23} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
2 $6.6 \times 10^{-24} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
3 $6.6 \times 10^{-44} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
4 $2.2 \times 10^{-52} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
Dual nature of radiation and Matter

142547 The ratio of the de-Broglie wavelengths for the electron and proton moving with the same velocity is $\left(m_{p}-\right.$ mass of proton, $m_{e}$-mass of electron)

1 $m_{p}: m_{e}$
2 $\mathrm{m}_{\mathrm{p}}^{2}: \mathrm{m}_{\mathrm{e}}^{2}$
3 $\mathrm{m}_{\mathrm{e}}: \mathrm{m}_{\mathrm{p}}$
4 $\mathrm{m}_{\mathrm{e}}^{2}: \mathrm{m}_{\mathrm{p}}^{2}$
Dual nature of radiation and Matter

142552 The potential energy of particle of mass $m$ varies as
$U(x)\left\{\begin{array}{c}
E_{0} \text { for } 0 \leq x \leq 1$
$0 \text { for } x>1\right.$
The de Broglie wavelength of the particle in the range $0 \leq x \leq 1$ is $\lambda_{1}$ and that in the range $x>1$ is $\lambda_{2}$. If the total energy of the particle is $2 E_{0}$ find $\lambda_{1} / \lambda_{2}$.

1 $\sqrt{2}$
2 $\sqrt{3}$
3 $\sqrt{\frac{1}{2}}$
4 $\sqrt{\frac{2}{3}}$
Dual nature of radiation and Matter

142558 The energy of a photon of wavelength $\lambda$ is

1 hc $\lambda$
2 $\frac{\mathrm{hc}}{\lambda}$
3 $\frac{\lambda}{\mathrm{hc}}$
4 $\frac{\lambda \mathrm{h}}{\mathrm{c}}$
Dual nature of radiation and Matter

142526 According to the quantum theory of radiation, the momentum (p) of a photon is related to its frequency (f), wavelength $(\lambda)$ and the speed of light (c) by the relation

1 $\mathrm{p}=\frac{\mathrm{h}}{\lambda}$
2 $p=h \lambda$
3 $\mathrm{p}=\mathrm{hf}$
4 $\mathrm{p}=\frac{\mathrm{h}}{\mathrm{c}}$
Dual nature of radiation and Matter

142534 The momentum of a photon in an X-ray beam of $10^{-10} \mathrm{~m}$ wavelength is

1 $1.5 \times 10^{-23} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
2 $6.6 \times 10^{-24} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
3 $6.6 \times 10^{-44} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
4 $2.2 \times 10^{-52} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
Dual nature of radiation and Matter

142547 The ratio of the de-Broglie wavelengths for the electron and proton moving with the same velocity is $\left(m_{p}-\right.$ mass of proton, $m_{e}$-mass of electron)

1 $m_{p}: m_{e}$
2 $\mathrm{m}_{\mathrm{p}}^{2}: \mathrm{m}_{\mathrm{e}}^{2}$
3 $\mathrm{m}_{\mathrm{e}}: \mathrm{m}_{\mathrm{p}}$
4 $\mathrm{m}_{\mathrm{e}}^{2}: \mathrm{m}_{\mathrm{p}}^{2}$
Dual nature of radiation and Matter

142552 The potential energy of particle of mass $m$ varies as
$U(x)\left\{\begin{array}{c}
E_{0} \text { for } 0 \leq x \leq 1$
$0 \text { for } x>1\right.$
The de Broglie wavelength of the particle in the range $0 \leq x \leq 1$ is $\lambda_{1}$ and that in the range $x>1$ is $\lambda_{2}$. If the total energy of the particle is $2 E_{0}$ find $\lambda_{1} / \lambda_{2}$.

1 $\sqrt{2}$
2 $\sqrt{3}$
3 $\sqrt{\frac{1}{2}}$
4 $\sqrt{\frac{2}{3}}$
Dual nature of radiation and Matter

142558 The energy of a photon of wavelength $\lambda$ is

1 hc $\lambda$
2 $\frac{\mathrm{hc}}{\lambda}$
3 $\frac{\lambda}{\mathrm{hc}}$
4 $\frac{\lambda \mathrm{h}}{\mathrm{c}}$
Dual nature of radiation and Matter

142526 According to the quantum theory of radiation, the momentum (p) of a photon is related to its frequency (f), wavelength $(\lambda)$ and the speed of light (c) by the relation

1 $\mathrm{p}=\frac{\mathrm{h}}{\lambda}$
2 $p=h \lambda$
3 $\mathrm{p}=\mathrm{hf}$
4 $\mathrm{p}=\frac{\mathrm{h}}{\mathrm{c}}$
Dual nature of radiation and Matter

142534 The momentum of a photon in an X-ray beam of $10^{-10} \mathrm{~m}$ wavelength is

1 $1.5 \times 10^{-23} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
2 $6.6 \times 10^{-24} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
3 $6.6 \times 10^{-44} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
4 $2.2 \times 10^{-52} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
Dual nature of radiation and Matter

142547 The ratio of the de-Broglie wavelengths for the electron and proton moving with the same velocity is $\left(m_{p}-\right.$ mass of proton, $m_{e}$-mass of electron)

1 $m_{p}: m_{e}$
2 $\mathrm{m}_{\mathrm{p}}^{2}: \mathrm{m}_{\mathrm{e}}^{2}$
3 $\mathrm{m}_{\mathrm{e}}: \mathrm{m}_{\mathrm{p}}$
4 $\mathrm{m}_{\mathrm{e}}^{2}: \mathrm{m}_{\mathrm{p}}^{2}$
Dual nature of radiation and Matter

142552 The potential energy of particle of mass $m$ varies as
$U(x)\left\{\begin{array}{c}
E_{0} \text { for } 0 \leq x \leq 1$
$0 \text { for } x>1\right.$
The de Broglie wavelength of the particle in the range $0 \leq x \leq 1$ is $\lambda_{1}$ and that in the range $x>1$ is $\lambda_{2}$. If the total energy of the particle is $2 E_{0}$ find $\lambda_{1} / \lambda_{2}$.

1 $\sqrt{2}$
2 $\sqrt{3}$
3 $\sqrt{\frac{1}{2}}$
4 $\sqrt{\frac{2}{3}}$
Dual nature of radiation and Matter

142558 The energy of a photon of wavelength $\lambda$ is

1 hc $\lambda$
2 $\frac{\mathrm{hc}}{\lambda}$
3 $\frac{\lambda}{\mathrm{hc}}$
4 $\frac{\lambda \mathrm{h}}{\mathrm{c}}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Dual nature of radiation and Matter

142526 According to the quantum theory of radiation, the momentum (p) of a photon is related to its frequency (f), wavelength $(\lambda)$ and the speed of light (c) by the relation

1 $\mathrm{p}=\frac{\mathrm{h}}{\lambda}$
2 $p=h \lambda$
3 $\mathrm{p}=\mathrm{hf}$
4 $\mathrm{p}=\frac{\mathrm{h}}{\mathrm{c}}$
Dual nature of radiation and Matter

142534 The momentum of a photon in an X-ray beam of $10^{-10} \mathrm{~m}$ wavelength is

1 $1.5 \times 10^{-23} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
2 $6.6 \times 10^{-24} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
3 $6.6 \times 10^{-44} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
4 $2.2 \times 10^{-52} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
Dual nature of radiation and Matter

142547 The ratio of the de-Broglie wavelengths for the electron and proton moving with the same velocity is $\left(m_{p}-\right.$ mass of proton, $m_{e}$-mass of electron)

1 $m_{p}: m_{e}$
2 $\mathrm{m}_{\mathrm{p}}^{2}: \mathrm{m}_{\mathrm{e}}^{2}$
3 $\mathrm{m}_{\mathrm{e}}: \mathrm{m}_{\mathrm{p}}$
4 $\mathrm{m}_{\mathrm{e}}^{2}: \mathrm{m}_{\mathrm{p}}^{2}$
Dual nature of radiation and Matter

142552 The potential energy of particle of mass $m$ varies as
$U(x)\left\{\begin{array}{c}
E_{0} \text { for } 0 \leq x \leq 1$
$0 \text { for } x>1\right.$
The de Broglie wavelength of the particle in the range $0 \leq x \leq 1$ is $\lambda_{1}$ and that in the range $x>1$ is $\lambda_{2}$. If the total energy of the particle is $2 E_{0}$ find $\lambda_{1} / \lambda_{2}$.

1 $\sqrt{2}$
2 $\sqrt{3}$
3 $\sqrt{\frac{1}{2}}$
4 $\sqrt{\frac{2}{3}}$
Dual nature of radiation and Matter

142558 The energy of a photon of wavelength $\lambda$ is

1 hc $\lambda$
2 $\frac{\mathrm{hc}}{\lambda}$
3 $\frac{\lambda}{\mathrm{hc}}$
4 $\frac{\lambda \mathrm{h}}{\mathrm{c}}$
Dual nature of radiation and Matter

142526 According to the quantum theory of radiation, the momentum (p) of a photon is related to its frequency (f), wavelength $(\lambda)$ and the speed of light (c) by the relation

1 $\mathrm{p}=\frac{\mathrm{h}}{\lambda}$
2 $p=h \lambda$
3 $\mathrm{p}=\mathrm{hf}$
4 $\mathrm{p}=\frac{\mathrm{h}}{\mathrm{c}}$
Dual nature of radiation and Matter

142534 The momentum of a photon in an X-ray beam of $10^{-10} \mathrm{~m}$ wavelength is

1 $1.5 \times 10^{-23} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
2 $6.6 \times 10^{-24} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
3 $6.6 \times 10^{-44} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
4 $2.2 \times 10^{-52} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
Dual nature of radiation and Matter

142547 The ratio of the de-Broglie wavelengths for the electron and proton moving with the same velocity is $\left(m_{p}-\right.$ mass of proton, $m_{e}$-mass of electron)

1 $m_{p}: m_{e}$
2 $\mathrm{m}_{\mathrm{p}}^{2}: \mathrm{m}_{\mathrm{e}}^{2}$
3 $\mathrm{m}_{\mathrm{e}}: \mathrm{m}_{\mathrm{p}}$
4 $\mathrm{m}_{\mathrm{e}}^{2}: \mathrm{m}_{\mathrm{p}}^{2}$
Dual nature of radiation and Matter

142552 The potential energy of particle of mass $m$ varies as
$U(x)\left\{\begin{array}{c}
E_{0} \text { for } 0 \leq x \leq 1$
$0 \text { for } x>1\right.$
The de Broglie wavelength of the particle in the range $0 \leq x \leq 1$ is $\lambda_{1}$ and that in the range $x>1$ is $\lambda_{2}$. If the total energy of the particle is $2 E_{0}$ find $\lambda_{1} / \lambda_{2}$.

1 $\sqrt{2}$
2 $\sqrt{3}$
3 $\sqrt{\frac{1}{2}}$
4 $\sqrt{\frac{2}{3}}$
Dual nature of radiation and Matter

142558 The energy of a photon of wavelength $\lambda$ is

1 hc $\lambda$
2 $\frac{\mathrm{hc}}{\lambda}$
3 $\frac{\lambda}{\mathrm{hc}}$
4 $\frac{\lambda \mathrm{h}}{\mathrm{c}}$