Wave Nature Of Light Of Matter (de-Broglie)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Dual nature of radiation and Matter

142508 The de-Broglie wavelength of a body of mass $m$ and kinetic energy $E$ is given by :

1 $\lambda=\frac{\mathrm{h}}{\mathrm{mE}}$
2 $\lambda=\frac{\sqrt{2 \mathrm{mE}}}{\mathrm{h}}$
3 $\lambda=\frac{\mathrm{h}}{2 \mathrm{mE}}$
4 $\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mE}}}$
Dual nature of radiation and Matter

142513 The kinetic energy of an electron get tripled then the de-Broglie wavelength associated with it changes by a factor

1 $\frac{1}{3}$
2 $\sqrt{3}$
3 $\frac{1}{\sqrt{3}}$
4 3
Dual nature of radiation and Matter

142514 An electron accelerated under a potential difference $V$ volt has a certain wavelength $\lambda$. Mass of proton is some 2000 times of the mass of the electron.If the proton has to has the same wavelength $\lambda$, then it will have to be accelerated under a potential difference of

1 V volt
2 $2000 \mathrm{~V}$ volt
3 $\frac{\mathrm{V}}{2000}$ volt
4 $\sqrt{2000} \mathrm{~V}$ volt
Dual nature of radiation and Matter

142516 The de-Broglie wavelength associated with a steel ball of mass $1000 \mathrm{gm}$ moving at a speed of $1 \mathrm{~ms}^{-1}$ is $\left[\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}\right]$

1 $6.626 \times 10^{-31} \mathrm{~m}$
2 $6.626 \times 10^{-37} \mathrm{~m}$
3 $6.626 \times 10^{-34} \mathrm{~m}$
4 $6.626 \times 10^{34} \mathrm{~m}$
Dual nature of radiation and Matter

142508 The de-Broglie wavelength of a body of mass $m$ and kinetic energy $E$ is given by :

1 $\lambda=\frac{\mathrm{h}}{\mathrm{mE}}$
2 $\lambda=\frac{\sqrt{2 \mathrm{mE}}}{\mathrm{h}}$
3 $\lambda=\frac{\mathrm{h}}{2 \mathrm{mE}}$
4 $\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mE}}}$
Dual nature of radiation and Matter

142513 The kinetic energy of an electron get tripled then the de-Broglie wavelength associated with it changes by a factor

1 $\frac{1}{3}$
2 $\sqrt{3}$
3 $\frac{1}{\sqrt{3}}$
4 3
Dual nature of radiation and Matter

142514 An electron accelerated under a potential difference $V$ volt has a certain wavelength $\lambda$. Mass of proton is some 2000 times of the mass of the electron.If the proton has to has the same wavelength $\lambda$, then it will have to be accelerated under a potential difference of

1 V volt
2 $2000 \mathrm{~V}$ volt
3 $\frac{\mathrm{V}}{2000}$ volt
4 $\sqrt{2000} \mathrm{~V}$ volt
Dual nature of radiation and Matter

142516 The de-Broglie wavelength associated with a steel ball of mass $1000 \mathrm{gm}$ moving at a speed of $1 \mathrm{~ms}^{-1}$ is $\left[\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}\right]$

1 $6.626 \times 10^{-31} \mathrm{~m}$
2 $6.626 \times 10^{-37} \mathrm{~m}$
3 $6.626 \times 10^{-34} \mathrm{~m}$
4 $6.626 \times 10^{34} \mathrm{~m}$
Dual nature of radiation and Matter

142508 The de-Broglie wavelength of a body of mass $m$ and kinetic energy $E$ is given by :

1 $\lambda=\frac{\mathrm{h}}{\mathrm{mE}}$
2 $\lambda=\frac{\sqrt{2 \mathrm{mE}}}{\mathrm{h}}$
3 $\lambda=\frac{\mathrm{h}}{2 \mathrm{mE}}$
4 $\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mE}}}$
Dual nature of radiation and Matter

142513 The kinetic energy of an electron get tripled then the de-Broglie wavelength associated with it changes by a factor

1 $\frac{1}{3}$
2 $\sqrt{3}$
3 $\frac{1}{\sqrt{3}}$
4 3
Dual nature of radiation and Matter

142514 An electron accelerated under a potential difference $V$ volt has a certain wavelength $\lambda$. Mass of proton is some 2000 times of the mass of the electron.If the proton has to has the same wavelength $\lambda$, then it will have to be accelerated under a potential difference of

1 V volt
2 $2000 \mathrm{~V}$ volt
3 $\frac{\mathrm{V}}{2000}$ volt
4 $\sqrt{2000} \mathrm{~V}$ volt
Dual nature of radiation and Matter

142516 The de-Broglie wavelength associated with a steel ball of mass $1000 \mathrm{gm}$ moving at a speed of $1 \mathrm{~ms}^{-1}$ is $\left[\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}\right]$

1 $6.626 \times 10^{-31} \mathrm{~m}$
2 $6.626 \times 10^{-37} \mathrm{~m}$
3 $6.626 \times 10^{-34} \mathrm{~m}$
4 $6.626 \times 10^{34} \mathrm{~m}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Dual nature of radiation and Matter

142508 The de-Broglie wavelength of a body of mass $m$ and kinetic energy $E$ is given by :

1 $\lambda=\frac{\mathrm{h}}{\mathrm{mE}}$
2 $\lambda=\frac{\sqrt{2 \mathrm{mE}}}{\mathrm{h}}$
3 $\lambda=\frac{\mathrm{h}}{2 \mathrm{mE}}$
4 $\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mE}}}$
Dual nature of radiation and Matter

142513 The kinetic energy of an electron get tripled then the de-Broglie wavelength associated with it changes by a factor

1 $\frac{1}{3}$
2 $\sqrt{3}$
3 $\frac{1}{\sqrt{3}}$
4 3
Dual nature of radiation and Matter

142514 An electron accelerated under a potential difference $V$ volt has a certain wavelength $\lambda$. Mass of proton is some 2000 times of the mass of the electron.If the proton has to has the same wavelength $\lambda$, then it will have to be accelerated under a potential difference of

1 V volt
2 $2000 \mathrm{~V}$ volt
3 $\frac{\mathrm{V}}{2000}$ volt
4 $\sqrt{2000} \mathrm{~V}$ volt
Dual nature of radiation and Matter

142516 The de-Broglie wavelength associated with a steel ball of mass $1000 \mathrm{gm}$ moving at a speed of $1 \mathrm{~ms}^{-1}$ is $\left[\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}\right]$

1 $6.626 \times 10^{-31} \mathrm{~m}$
2 $6.626 \times 10^{-37} \mathrm{~m}$
3 $6.626 \times 10^{-34} \mathrm{~m}$
4 $6.626 \times 10^{34} \mathrm{~m}$