Wave Nature Of Light Of Matter (de-Broglie)
Dual nature of radiation and Matter

142473 If $E_{1}, E_{2}, E_{3}$ are the respective kinetic energies of an electron, an alpha-particle and a proton, each having the same de-Broglie wavelength, then

1 $E_{1}>E_{3}>E_{2}$
2 $E_{2}>E_{3}>E_{1}$
3 $\mathrm{E}_{1}>\mathrm{E}_{2}>\mathrm{E}_{3}$
4 $\mathrm{E}_{1}=\mathrm{E}_{2}=\mathrm{E}_{3}$
Dual nature of radiation and Matter

142474 The wavelength of $K_{\alpha}$-line characteristic $X$ rays emitted by an element is $0.32 \AA$. The wavelength of $K_{\beta}$-line emitted by the same element will be

1 $0.32 \AA$
2 $0.39 \AA$
3 $0.49 \AA$
4 $0.27 \AA$
Dual nature of radiation and Matter

142476 If the momentum of electron is changed by $P$, then the de-Broglie wavelength associated with it changes by $0.5 \%$. The initial momentum of electron will be

1 $200 \mathrm{P}$
2 $400 \mathrm{P}$
3 $\frac{\mathrm{P}}{200}$
4 $100 \mathrm{P}$
Dual nature of radiation and Matter

142477 A material particle with a rest mass $m_{0}$ is moving with a velocity of light $c$. Then the wavelength of the de Broglie wave associated with it is:

1 $\left(\mathrm{h} / \mathrm{m}_{0} \mathrm{c}\right)$
2 zero
3 $\infty$
4 $\left(\mathrm{m}_{0} \mathrm{c} / \mathrm{h}\right)$
Dual nature of radiation and Matter

142478 An electron of mass $m$ and charge $e$ initially at rest gets accelerated by a constant electric field E. The rate of change of de-Broglie wavelength of this electron at time $t$ ignoring relativistic effects is

1 $\frac{-\mathrm{h}}{\mathrm{eEt}^{2}}$
2 $\frac{- \text { eht }}{\mathrm{E}}$
3 $\frac{-\mathrm{mh}}{\mathrm{eEt}^{2}}$
4 $\frac{-\mathrm{h}}{\mathrm{eE}}$
Dual nature of radiation and Matter

142473 If $E_{1}, E_{2}, E_{3}$ are the respective kinetic energies of an electron, an alpha-particle and a proton, each having the same de-Broglie wavelength, then

1 $E_{1}>E_{3}>E_{2}$
2 $E_{2}>E_{3}>E_{1}$
3 $\mathrm{E}_{1}>\mathrm{E}_{2}>\mathrm{E}_{3}$
4 $\mathrm{E}_{1}=\mathrm{E}_{2}=\mathrm{E}_{3}$
Dual nature of radiation and Matter

142474 The wavelength of $K_{\alpha}$-line characteristic $X$ rays emitted by an element is $0.32 \AA$. The wavelength of $K_{\beta}$-line emitted by the same element will be

1 $0.32 \AA$
2 $0.39 \AA$
3 $0.49 \AA$
4 $0.27 \AA$
Dual nature of radiation and Matter

142476 If the momentum of electron is changed by $P$, then the de-Broglie wavelength associated with it changes by $0.5 \%$. The initial momentum of electron will be

1 $200 \mathrm{P}$
2 $400 \mathrm{P}$
3 $\frac{\mathrm{P}}{200}$
4 $100 \mathrm{P}$
Dual nature of radiation and Matter

142477 A material particle with a rest mass $m_{0}$ is moving with a velocity of light $c$. Then the wavelength of the de Broglie wave associated with it is:

1 $\left(\mathrm{h} / \mathrm{m}_{0} \mathrm{c}\right)$
2 zero
3 $\infty$
4 $\left(\mathrm{m}_{0} \mathrm{c} / \mathrm{h}\right)$
Dual nature of radiation and Matter

142478 An electron of mass $m$ and charge $e$ initially at rest gets accelerated by a constant electric field E. The rate of change of de-Broglie wavelength of this electron at time $t$ ignoring relativistic effects is

1 $\frac{-\mathrm{h}}{\mathrm{eEt}^{2}}$
2 $\frac{- \text { eht }}{\mathrm{E}}$
3 $\frac{-\mathrm{mh}}{\mathrm{eEt}^{2}}$
4 $\frac{-\mathrm{h}}{\mathrm{eE}}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Dual nature of radiation and Matter

142473 If $E_{1}, E_{2}, E_{3}$ are the respective kinetic energies of an electron, an alpha-particle and a proton, each having the same de-Broglie wavelength, then

1 $E_{1}>E_{3}>E_{2}$
2 $E_{2}>E_{3}>E_{1}$
3 $\mathrm{E}_{1}>\mathrm{E}_{2}>\mathrm{E}_{3}$
4 $\mathrm{E}_{1}=\mathrm{E}_{2}=\mathrm{E}_{3}$
Dual nature of radiation and Matter

142474 The wavelength of $K_{\alpha}$-line characteristic $X$ rays emitted by an element is $0.32 \AA$. The wavelength of $K_{\beta}$-line emitted by the same element will be

1 $0.32 \AA$
2 $0.39 \AA$
3 $0.49 \AA$
4 $0.27 \AA$
Dual nature of radiation and Matter

142476 If the momentum of electron is changed by $P$, then the de-Broglie wavelength associated with it changes by $0.5 \%$. The initial momentum of electron will be

1 $200 \mathrm{P}$
2 $400 \mathrm{P}$
3 $\frac{\mathrm{P}}{200}$
4 $100 \mathrm{P}$
Dual nature of radiation and Matter

142477 A material particle with a rest mass $m_{0}$ is moving with a velocity of light $c$. Then the wavelength of the de Broglie wave associated with it is:

1 $\left(\mathrm{h} / \mathrm{m}_{0} \mathrm{c}\right)$
2 zero
3 $\infty$
4 $\left(\mathrm{m}_{0} \mathrm{c} / \mathrm{h}\right)$
Dual nature of radiation and Matter

142478 An electron of mass $m$ and charge $e$ initially at rest gets accelerated by a constant electric field E. The rate of change of de-Broglie wavelength of this electron at time $t$ ignoring relativistic effects is

1 $\frac{-\mathrm{h}}{\mathrm{eEt}^{2}}$
2 $\frac{- \text { eht }}{\mathrm{E}}$
3 $\frac{-\mathrm{mh}}{\mathrm{eEt}^{2}}$
4 $\frac{-\mathrm{h}}{\mathrm{eE}}$
Dual nature of radiation and Matter

142473 If $E_{1}, E_{2}, E_{3}$ are the respective kinetic energies of an electron, an alpha-particle and a proton, each having the same de-Broglie wavelength, then

1 $E_{1}>E_{3}>E_{2}$
2 $E_{2}>E_{3}>E_{1}$
3 $\mathrm{E}_{1}>\mathrm{E}_{2}>\mathrm{E}_{3}$
4 $\mathrm{E}_{1}=\mathrm{E}_{2}=\mathrm{E}_{3}$
Dual nature of radiation and Matter

142474 The wavelength of $K_{\alpha}$-line characteristic $X$ rays emitted by an element is $0.32 \AA$. The wavelength of $K_{\beta}$-line emitted by the same element will be

1 $0.32 \AA$
2 $0.39 \AA$
3 $0.49 \AA$
4 $0.27 \AA$
Dual nature of radiation and Matter

142476 If the momentum of electron is changed by $P$, then the de-Broglie wavelength associated with it changes by $0.5 \%$. The initial momentum of electron will be

1 $200 \mathrm{P}$
2 $400 \mathrm{P}$
3 $\frac{\mathrm{P}}{200}$
4 $100 \mathrm{P}$
Dual nature of radiation and Matter

142477 A material particle with a rest mass $m_{0}$ is moving with a velocity of light $c$. Then the wavelength of the de Broglie wave associated with it is:

1 $\left(\mathrm{h} / \mathrm{m}_{0} \mathrm{c}\right)$
2 zero
3 $\infty$
4 $\left(\mathrm{m}_{0} \mathrm{c} / \mathrm{h}\right)$
Dual nature of radiation and Matter

142478 An electron of mass $m$ and charge $e$ initially at rest gets accelerated by a constant electric field E. The rate of change of de-Broglie wavelength of this electron at time $t$ ignoring relativistic effects is

1 $\frac{-\mathrm{h}}{\mathrm{eEt}^{2}}$
2 $\frac{- \text { eht }}{\mathrm{E}}$
3 $\frac{-\mathrm{mh}}{\mathrm{eEt}^{2}}$
4 $\frac{-\mathrm{h}}{\mathrm{eE}}$
Dual nature of radiation and Matter

142473 If $E_{1}, E_{2}, E_{3}$ are the respective kinetic energies of an electron, an alpha-particle and a proton, each having the same de-Broglie wavelength, then

1 $E_{1}>E_{3}>E_{2}$
2 $E_{2}>E_{3}>E_{1}$
3 $\mathrm{E}_{1}>\mathrm{E}_{2}>\mathrm{E}_{3}$
4 $\mathrm{E}_{1}=\mathrm{E}_{2}=\mathrm{E}_{3}$
Dual nature of radiation and Matter

142474 The wavelength of $K_{\alpha}$-line characteristic $X$ rays emitted by an element is $0.32 \AA$. The wavelength of $K_{\beta}$-line emitted by the same element will be

1 $0.32 \AA$
2 $0.39 \AA$
3 $0.49 \AA$
4 $0.27 \AA$
Dual nature of radiation and Matter

142476 If the momentum of electron is changed by $P$, then the de-Broglie wavelength associated with it changes by $0.5 \%$. The initial momentum of electron will be

1 $200 \mathrm{P}$
2 $400 \mathrm{P}$
3 $\frac{\mathrm{P}}{200}$
4 $100 \mathrm{P}$
Dual nature of radiation and Matter

142477 A material particle with a rest mass $m_{0}$ is moving with a velocity of light $c$. Then the wavelength of the de Broglie wave associated with it is:

1 $\left(\mathrm{h} / \mathrm{m}_{0} \mathrm{c}\right)$
2 zero
3 $\infty$
4 $\left(\mathrm{m}_{0} \mathrm{c} / \mathrm{h}\right)$
Dual nature of radiation and Matter

142478 An electron of mass $m$ and charge $e$ initially at rest gets accelerated by a constant electric field E. The rate of change of de-Broglie wavelength of this electron at time $t$ ignoring relativistic effects is

1 $\frac{-\mathrm{h}}{\mathrm{eEt}^{2}}$
2 $\frac{- \text { eht }}{\mathrm{E}}$
3 $\frac{-\mathrm{mh}}{\mathrm{eEt}^{2}}$
4 $\frac{-\mathrm{h}}{\mathrm{eE}}$