Wave Nature Of Light Of Matter (de-Broglie)
Dual nature of radiation and Matter

142468 In experiment of Davisson-Germer, emitted electron from filament is accelerated through voltage $V$ then de-Broglie wavelength of that electron will be m.

1 $\frac{2 \mathrm{Vem}}{\sqrt{\mathrm{h}}}$
2 $\frac{\sqrt{\mathrm{h}}}{2 \mathrm{Vem}}$
3 $\frac{\sqrt{2 \mathrm{Vem}}}{\mathrm{h}}$
4 $\frac{\mathrm{h}}{\sqrt{2 \mathrm{Vem}}}$
Dual nature of radiation and Matter

142469 The de-Broglie wavelength of a proton (mass $=$ $1.6 \times 10^{-27} \mathrm{~kg}$ ) accelerated through a potential difference of $1 \mathrm{kV}$ is

1 $600 \AA$
2 $0.9 \times 10^{-12} \mathrm{~m}$
3 $7 \AA$
4 $0.9 \mathrm{~mm}$.
Dual nature of radiation and Matter

142470 The de-Broglie wavelength of a neutron at $27^{\circ} \mathrm{C}$ is $\lambda$. What will be its wavelength at $927^{\circ} \mathrm{C}$ ?

1 $\lambda / 2$
2 $\lambda / 3$
3 $\lambda / 4$
4 $\lambda / 9$
Dual nature of radiation and Matter

142471 de - Broglie wavelength of a body of mass $1 \mathrm{~kg}$ moving with velocity of $2000 \mathrm{~m} / \mathrm{s}$ is

1 $3.32 \times 10^{-27} \AA$
2 $1.5 \times 10^{7} \AA$
3 $0.55 \times 10^{-22} \AA$
4 None of these
Dual nature of radiation and Matter

142468 In experiment of Davisson-Germer, emitted electron from filament is accelerated through voltage $V$ then de-Broglie wavelength of that electron will be m.

1 $\frac{2 \mathrm{Vem}}{\sqrt{\mathrm{h}}}$
2 $\frac{\sqrt{\mathrm{h}}}{2 \mathrm{Vem}}$
3 $\frac{\sqrt{2 \mathrm{Vem}}}{\mathrm{h}}$
4 $\frac{\mathrm{h}}{\sqrt{2 \mathrm{Vem}}}$
Dual nature of radiation and Matter

142469 The de-Broglie wavelength of a proton (mass $=$ $1.6 \times 10^{-27} \mathrm{~kg}$ ) accelerated through a potential difference of $1 \mathrm{kV}$ is

1 $600 \AA$
2 $0.9 \times 10^{-12} \mathrm{~m}$
3 $7 \AA$
4 $0.9 \mathrm{~mm}$.
Dual nature of radiation and Matter

142470 The de-Broglie wavelength of a neutron at $27^{\circ} \mathrm{C}$ is $\lambda$. What will be its wavelength at $927^{\circ} \mathrm{C}$ ?

1 $\lambda / 2$
2 $\lambda / 3$
3 $\lambda / 4$
4 $\lambda / 9$
Dual nature of radiation and Matter

142471 de - Broglie wavelength of a body of mass $1 \mathrm{~kg}$ moving with velocity of $2000 \mathrm{~m} / \mathrm{s}$ is

1 $3.32 \times 10^{-27} \AA$
2 $1.5 \times 10^{7} \AA$
3 $0.55 \times 10^{-22} \AA$
4 None of these
Dual nature of radiation and Matter

142468 In experiment of Davisson-Germer, emitted electron from filament is accelerated through voltage $V$ then de-Broglie wavelength of that electron will be m.

1 $\frac{2 \mathrm{Vem}}{\sqrt{\mathrm{h}}}$
2 $\frac{\sqrt{\mathrm{h}}}{2 \mathrm{Vem}}$
3 $\frac{\sqrt{2 \mathrm{Vem}}}{\mathrm{h}}$
4 $\frac{\mathrm{h}}{\sqrt{2 \mathrm{Vem}}}$
Dual nature of radiation and Matter

142469 The de-Broglie wavelength of a proton (mass $=$ $1.6 \times 10^{-27} \mathrm{~kg}$ ) accelerated through a potential difference of $1 \mathrm{kV}$ is

1 $600 \AA$
2 $0.9 \times 10^{-12} \mathrm{~m}$
3 $7 \AA$
4 $0.9 \mathrm{~mm}$.
Dual nature of radiation and Matter

142470 The de-Broglie wavelength of a neutron at $27^{\circ} \mathrm{C}$ is $\lambda$. What will be its wavelength at $927^{\circ} \mathrm{C}$ ?

1 $\lambda / 2$
2 $\lambda / 3$
3 $\lambda / 4$
4 $\lambda / 9$
Dual nature of radiation and Matter

142471 de - Broglie wavelength of a body of mass $1 \mathrm{~kg}$ moving with velocity of $2000 \mathrm{~m} / \mathrm{s}$ is

1 $3.32 \times 10^{-27} \AA$
2 $1.5 \times 10^{7} \AA$
3 $0.55 \times 10^{-22} \AA$
4 None of these
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Dual nature of radiation and Matter

142468 In experiment of Davisson-Germer, emitted electron from filament is accelerated through voltage $V$ then de-Broglie wavelength of that electron will be m.

1 $\frac{2 \mathrm{Vem}}{\sqrt{\mathrm{h}}}$
2 $\frac{\sqrt{\mathrm{h}}}{2 \mathrm{Vem}}$
3 $\frac{\sqrt{2 \mathrm{Vem}}}{\mathrm{h}}$
4 $\frac{\mathrm{h}}{\sqrt{2 \mathrm{Vem}}}$
Dual nature of radiation and Matter

142469 The de-Broglie wavelength of a proton (mass $=$ $1.6 \times 10^{-27} \mathrm{~kg}$ ) accelerated through a potential difference of $1 \mathrm{kV}$ is

1 $600 \AA$
2 $0.9 \times 10^{-12} \mathrm{~m}$
3 $7 \AA$
4 $0.9 \mathrm{~mm}$.
Dual nature of radiation and Matter

142470 The de-Broglie wavelength of a neutron at $27^{\circ} \mathrm{C}$ is $\lambda$. What will be its wavelength at $927^{\circ} \mathrm{C}$ ?

1 $\lambda / 2$
2 $\lambda / 3$
3 $\lambda / 4$
4 $\lambda / 9$
Dual nature of radiation and Matter

142471 de - Broglie wavelength of a body of mass $1 \mathrm{~kg}$ moving with velocity of $2000 \mathrm{~m} / \mathrm{s}$ is

1 $3.32 \times 10^{-27} \AA$
2 $1.5 \times 10^{7} \AA$
3 $0.55 \times 10^{-22} \AA$
4 None of these