Einstein s Photo Electric Equation and Energy Quantity Of Radiation (KE, Vmax, Work Function)
Dual nature of radiation and Matter

142332 The photoelectric work function of a metal surface is $2 \mathrm{eV}$. When light of frequency $1.5 \times$ $10^{15} \mathrm{~Hz}$ is incident on it, the maximum kinetic energy of the photo electrons. approximately is

1 $8 \mathrm{eV}$
2 $6 \mathrm{eV}$
3 $2 \mathrm{eV}$
4 $4 \mathrm{eV}$
Dual nature of radiation and Matter

142333 When a metal surface is illuminated by a light of wavelength $400 \mathrm{~nm}$ and $250 \mathrm{~nm}$. The maximum velocities of the photo electrons ejected are $v$ and $2 v$ respectively. The work function of the metal is $(h=$ planck's constant, $c=$ velocity of light in air)

1 $2 \mathrm{hc} \times 10^{6} \mathrm{~J}$
2 $1.5 \mathrm{hc} \times 10^{6} \mathrm{~J}$
3 he $\times 10^{6} \mathrm{~J}$
4 $0.5 \mathrm{hc} \times 10^{6} \mathrm{~J}$
Dual nature of radiation and Matter

142334 The work function of the nickel is $5 \mathrm{eV}$. When a light of wavelength $2000 \AA$ falls on it, it emits photoelectrons in the circuit. Then, the potential difference necessary to stop the fastest electrons emitted is (Given, $h=6.67 \times 10^{-34} \mathrm{~J}$-s)

1 $1.0 \mathrm{~V}$
2 $1.75 \mathrm{~V}$
3 $1.25 \mathrm{~V}$
4 $0.75 \mathrm{~V}$
Dual nature of radiation and Matter

142335 If the work function of a potential is $6.875 \mathrm{eV}$, its threshold wavelength will be (Take $=\mathrm{c}=$ $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ )

1 $3600 \AA$
2 $2400 \AA$
3 $1800 \AA$
4 $1200 \AA$
Dual nature of radiation and Matter

142332 The photoelectric work function of a metal surface is $2 \mathrm{eV}$. When light of frequency $1.5 \times$ $10^{15} \mathrm{~Hz}$ is incident on it, the maximum kinetic energy of the photo electrons. approximately is

1 $8 \mathrm{eV}$
2 $6 \mathrm{eV}$
3 $2 \mathrm{eV}$
4 $4 \mathrm{eV}$
Dual nature of radiation and Matter

142333 When a metal surface is illuminated by a light of wavelength $400 \mathrm{~nm}$ and $250 \mathrm{~nm}$. The maximum velocities of the photo electrons ejected are $v$ and $2 v$ respectively. The work function of the metal is $(h=$ planck's constant, $c=$ velocity of light in air)

1 $2 \mathrm{hc} \times 10^{6} \mathrm{~J}$
2 $1.5 \mathrm{hc} \times 10^{6} \mathrm{~J}$
3 he $\times 10^{6} \mathrm{~J}$
4 $0.5 \mathrm{hc} \times 10^{6} \mathrm{~J}$
Dual nature of radiation and Matter

142334 The work function of the nickel is $5 \mathrm{eV}$. When a light of wavelength $2000 \AA$ falls on it, it emits photoelectrons in the circuit. Then, the potential difference necessary to stop the fastest electrons emitted is (Given, $h=6.67 \times 10^{-34} \mathrm{~J}$-s)

1 $1.0 \mathrm{~V}$
2 $1.75 \mathrm{~V}$
3 $1.25 \mathrm{~V}$
4 $0.75 \mathrm{~V}$
Dual nature of radiation and Matter

142335 If the work function of a potential is $6.875 \mathrm{eV}$, its threshold wavelength will be (Take $=\mathrm{c}=$ $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ )

1 $3600 \AA$
2 $2400 \AA$
3 $1800 \AA$
4 $1200 \AA$
Dual nature of radiation and Matter

142332 The photoelectric work function of a metal surface is $2 \mathrm{eV}$. When light of frequency $1.5 \times$ $10^{15} \mathrm{~Hz}$ is incident on it, the maximum kinetic energy of the photo electrons. approximately is

1 $8 \mathrm{eV}$
2 $6 \mathrm{eV}$
3 $2 \mathrm{eV}$
4 $4 \mathrm{eV}$
Dual nature of radiation and Matter

142333 When a metal surface is illuminated by a light of wavelength $400 \mathrm{~nm}$ and $250 \mathrm{~nm}$. The maximum velocities of the photo electrons ejected are $v$ and $2 v$ respectively. The work function of the metal is $(h=$ planck's constant, $c=$ velocity of light in air)

1 $2 \mathrm{hc} \times 10^{6} \mathrm{~J}$
2 $1.5 \mathrm{hc} \times 10^{6} \mathrm{~J}$
3 he $\times 10^{6} \mathrm{~J}$
4 $0.5 \mathrm{hc} \times 10^{6} \mathrm{~J}$
Dual nature of radiation and Matter

142334 The work function of the nickel is $5 \mathrm{eV}$. When a light of wavelength $2000 \AA$ falls on it, it emits photoelectrons in the circuit. Then, the potential difference necessary to stop the fastest electrons emitted is (Given, $h=6.67 \times 10^{-34} \mathrm{~J}$-s)

1 $1.0 \mathrm{~V}$
2 $1.75 \mathrm{~V}$
3 $1.25 \mathrm{~V}$
4 $0.75 \mathrm{~V}$
Dual nature of radiation and Matter

142335 If the work function of a potential is $6.875 \mathrm{eV}$, its threshold wavelength will be (Take $=\mathrm{c}=$ $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ )

1 $3600 \AA$
2 $2400 \AA$
3 $1800 \AA$
4 $1200 \AA$
Dual nature of radiation and Matter

142332 The photoelectric work function of a metal surface is $2 \mathrm{eV}$. When light of frequency $1.5 \times$ $10^{15} \mathrm{~Hz}$ is incident on it, the maximum kinetic energy of the photo electrons. approximately is

1 $8 \mathrm{eV}$
2 $6 \mathrm{eV}$
3 $2 \mathrm{eV}$
4 $4 \mathrm{eV}$
Dual nature of radiation and Matter

142333 When a metal surface is illuminated by a light of wavelength $400 \mathrm{~nm}$ and $250 \mathrm{~nm}$. The maximum velocities of the photo electrons ejected are $v$ and $2 v$ respectively. The work function of the metal is $(h=$ planck's constant, $c=$ velocity of light in air)

1 $2 \mathrm{hc} \times 10^{6} \mathrm{~J}$
2 $1.5 \mathrm{hc} \times 10^{6} \mathrm{~J}$
3 he $\times 10^{6} \mathrm{~J}$
4 $0.5 \mathrm{hc} \times 10^{6} \mathrm{~J}$
Dual nature of radiation and Matter

142334 The work function of the nickel is $5 \mathrm{eV}$. When a light of wavelength $2000 \AA$ falls on it, it emits photoelectrons in the circuit. Then, the potential difference necessary to stop the fastest electrons emitted is (Given, $h=6.67 \times 10^{-34} \mathrm{~J}$-s)

1 $1.0 \mathrm{~V}$
2 $1.75 \mathrm{~V}$
3 $1.25 \mathrm{~V}$
4 $0.75 \mathrm{~V}$
Dual nature of radiation and Matter

142335 If the work function of a potential is $6.875 \mathrm{eV}$, its threshold wavelength will be (Take $=\mathrm{c}=$ $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ )

1 $3600 \AA$
2 $2400 \AA$
3 $1800 \AA$
4 $1200 \AA$