Einstein s Photo Electric Equation and Energy Quantity Of Radiation (KE, Vmax, Work Function)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Dual nature of radiation and Matter

142320 The threshold frequency for photoelectric effect on sodium corresponds to a wavelength of $5000 \AA$. Its work function is

1 $4 \times 10^{-19} \mathrm{~J}$
2 $1 \mathrm{~J}$
3 $2 \times 10^{-19} \mathrm{~J}$
4 $13 \times 10^{-19} \mathrm{~J}$
Dual nature of radiation and Matter

142321 If the threshold wavelength for a certain metal is $2000 \AA$, then the work function of the metal is

1 $6.2 \mathrm{~J}$
2 $6.2 \mathrm{eV}$
3 $6.2 \mathrm{MeV}$
4 $6.2 \mathrm{keV}$
Dual nature of radiation and Matter

142323 Einstein's work on photoelectric effect gives support to

1 $\mathrm{E}=m \mathrm{c}^{2}$
2 $\mathrm{E}=\mathrm{hv}$
3 $\mathrm{hv}=\frac{1}{2} \mathrm{mv}^{2}$
4 $\mathrm{E}=\frac{\mathrm{h}}{\lambda}$
Dual nature of radiation and Matter

142324 In photoelectric emission process from a metal of work function $1.8 \mathrm{eV}$, the kinetic energy of most energetic electrons is $0.5 \mathrm{eV}$. The corresponding stopping potential is

1 $1.3 \mathrm{~V}$
2 $0.5 \mathrm{~V}$
3 $2.3 \mathrm{~V}$
4 $1.8 \mathrm{~V}$
Dual nature of radiation and Matter

142320 The threshold frequency for photoelectric effect on sodium corresponds to a wavelength of $5000 \AA$. Its work function is

1 $4 \times 10^{-19} \mathrm{~J}$
2 $1 \mathrm{~J}$
3 $2 \times 10^{-19} \mathrm{~J}$
4 $13 \times 10^{-19} \mathrm{~J}$
Dual nature of radiation and Matter

142321 If the threshold wavelength for a certain metal is $2000 \AA$, then the work function of the metal is

1 $6.2 \mathrm{~J}$
2 $6.2 \mathrm{eV}$
3 $6.2 \mathrm{MeV}$
4 $6.2 \mathrm{keV}$
Dual nature of radiation and Matter

142323 Einstein's work on photoelectric effect gives support to

1 $\mathrm{E}=m \mathrm{c}^{2}$
2 $\mathrm{E}=\mathrm{hv}$
3 $\mathrm{hv}=\frac{1}{2} \mathrm{mv}^{2}$
4 $\mathrm{E}=\frac{\mathrm{h}}{\lambda}$
Dual nature of radiation and Matter

142324 In photoelectric emission process from a metal of work function $1.8 \mathrm{eV}$, the kinetic energy of most energetic electrons is $0.5 \mathrm{eV}$. The corresponding stopping potential is

1 $1.3 \mathrm{~V}$
2 $0.5 \mathrm{~V}$
3 $2.3 \mathrm{~V}$
4 $1.8 \mathrm{~V}$
Dual nature of radiation and Matter

142320 The threshold frequency for photoelectric effect on sodium corresponds to a wavelength of $5000 \AA$. Its work function is

1 $4 \times 10^{-19} \mathrm{~J}$
2 $1 \mathrm{~J}$
3 $2 \times 10^{-19} \mathrm{~J}$
4 $13 \times 10^{-19} \mathrm{~J}$
Dual nature of radiation and Matter

142321 If the threshold wavelength for a certain metal is $2000 \AA$, then the work function of the metal is

1 $6.2 \mathrm{~J}$
2 $6.2 \mathrm{eV}$
3 $6.2 \mathrm{MeV}$
4 $6.2 \mathrm{keV}$
Dual nature of radiation and Matter

142323 Einstein's work on photoelectric effect gives support to

1 $\mathrm{E}=m \mathrm{c}^{2}$
2 $\mathrm{E}=\mathrm{hv}$
3 $\mathrm{hv}=\frac{1}{2} \mathrm{mv}^{2}$
4 $\mathrm{E}=\frac{\mathrm{h}}{\lambda}$
Dual nature of radiation and Matter

142324 In photoelectric emission process from a metal of work function $1.8 \mathrm{eV}$, the kinetic energy of most energetic electrons is $0.5 \mathrm{eV}$. The corresponding stopping potential is

1 $1.3 \mathrm{~V}$
2 $0.5 \mathrm{~V}$
3 $2.3 \mathrm{~V}$
4 $1.8 \mathrm{~V}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Dual nature of radiation and Matter

142320 The threshold frequency for photoelectric effect on sodium corresponds to a wavelength of $5000 \AA$. Its work function is

1 $4 \times 10^{-19} \mathrm{~J}$
2 $1 \mathrm{~J}$
3 $2 \times 10^{-19} \mathrm{~J}$
4 $13 \times 10^{-19} \mathrm{~J}$
Dual nature of radiation and Matter

142321 If the threshold wavelength for a certain metal is $2000 \AA$, then the work function of the metal is

1 $6.2 \mathrm{~J}$
2 $6.2 \mathrm{eV}$
3 $6.2 \mathrm{MeV}$
4 $6.2 \mathrm{keV}$
Dual nature of radiation and Matter

142323 Einstein's work on photoelectric effect gives support to

1 $\mathrm{E}=m \mathrm{c}^{2}$
2 $\mathrm{E}=\mathrm{hv}$
3 $\mathrm{hv}=\frac{1}{2} \mathrm{mv}^{2}$
4 $\mathrm{E}=\frac{\mathrm{h}}{\lambda}$
Dual nature of radiation and Matter

142324 In photoelectric emission process from a metal of work function $1.8 \mathrm{eV}$, the kinetic energy of most energetic electrons is $0.5 \mathrm{eV}$. The corresponding stopping potential is

1 $1.3 \mathrm{~V}$
2 $0.5 \mathrm{~V}$
3 $2.3 \mathrm{~V}$
4 $1.8 \mathrm{~V}$