Einstein s Photo Electric Equation and Energy Quantity Of Radiation (KE, Vmax, Work Function)
Dual nature of radiation and Matter

142316 A monochromatic source of light emits photons of frequency $6 \times 10^{14} \mathrm{~Hz}$. The power emitted by the source is $8 \times 10^{-3} \mathrm{~W}$. Calculate the number of photons emitted per second.
(Take h $=6.63 \times 10^{-34} \mathrm{~J}-\mathrm{s}$ )

1 $6 \times 10^{14}$
2 $4 \times 10^{15}$
3 $2 \times 10^{16}$
4 $1 \times 10^{17}$
Dual nature of radiation and Matter

142317 A beam of $450 \mathrm{~nm}$ light is incident on a metal having work function $2 \mathrm{eV}$ and placed in a magnetic field $B$. If the most energetic electrons emitted are bent into circular arc of radius 0.2 $\mathbf{m}$, find $B$.

1 $2.36 \times 10^{-4} \mathrm{~T}$
2 $1.46 \times 10^{-5} \mathrm{~T}$
3 $6.9 \times 10^{-5} \mathrm{~T}$
4 $9.2 \times 10^{-6} \mathrm{~T}$
Dual nature of radiation and Matter

142318 Photoelectric work function of a metal is $1 \mathrm{eV}$, light of wavelength $\lambda=3000 \AA$ falls on it. The photoelectrons come out with velocity

1 $10 \mathrm{~m} / \mathrm{s}$
2 $10^{2} \mathrm{~m} / \mathrm{s}$
3 $10^{4} \mathrm{~m} / \mathrm{s}$
4 $10^{6} \mathrm{~m} / \mathrm{s}$
Dual nature of radiation and Matter

142319 Ultraviolet radiation of $6.2 \mathrm{eV}$ falls on an aluminium surface. KE of fastest electorn emitted is (work function $=\mathbf{4 . 2 \mathrm { eV }}$ )

1 $3.2 \times 10^{-21} \mathrm{~J}$
2 $3.2 \times 10^{-19} \mathrm{~J}$
3 $7 \times 10^{-25} \mathrm{~J}$
4 $9 \times 10^{-32} \mathrm{~J}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Dual nature of radiation and Matter

142316 A monochromatic source of light emits photons of frequency $6 \times 10^{14} \mathrm{~Hz}$. The power emitted by the source is $8 \times 10^{-3} \mathrm{~W}$. Calculate the number of photons emitted per second.
(Take h $=6.63 \times 10^{-34} \mathrm{~J}-\mathrm{s}$ )

1 $6 \times 10^{14}$
2 $4 \times 10^{15}$
3 $2 \times 10^{16}$
4 $1 \times 10^{17}$
Dual nature of radiation and Matter

142317 A beam of $450 \mathrm{~nm}$ light is incident on a metal having work function $2 \mathrm{eV}$ and placed in a magnetic field $B$. If the most energetic electrons emitted are bent into circular arc of radius 0.2 $\mathbf{m}$, find $B$.

1 $2.36 \times 10^{-4} \mathrm{~T}$
2 $1.46 \times 10^{-5} \mathrm{~T}$
3 $6.9 \times 10^{-5} \mathrm{~T}$
4 $9.2 \times 10^{-6} \mathrm{~T}$
Dual nature of radiation and Matter

142318 Photoelectric work function of a metal is $1 \mathrm{eV}$, light of wavelength $\lambda=3000 \AA$ falls on it. The photoelectrons come out with velocity

1 $10 \mathrm{~m} / \mathrm{s}$
2 $10^{2} \mathrm{~m} / \mathrm{s}$
3 $10^{4} \mathrm{~m} / \mathrm{s}$
4 $10^{6} \mathrm{~m} / \mathrm{s}$
Dual nature of radiation and Matter

142319 Ultraviolet radiation of $6.2 \mathrm{eV}$ falls on an aluminium surface. KE of fastest electorn emitted is (work function $=\mathbf{4 . 2 \mathrm { eV }}$ )

1 $3.2 \times 10^{-21} \mathrm{~J}$
2 $3.2 \times 10^{-19} \mathrm{~J}$
3 $7 \times 10^{-25} \mathrm{~J}$
4 $9 \times 10^{-32} \mathrm{~J}$
Dual nature of radiation and Matter

142316 A monochromatic source of light emits photons of frequency $6 \times 10^{14} \mathrm{~Hz}$. The power emitted by the source is $8 \times 10^{-3} \mathrm{~W}$. Calculate the number of photons emitted per second.
(Take h $=6.63 \times 10^{-34} \mathrm{~J}-\mathrm{s}$ )

1 $6 \times 10^{14}$
2 $4 \times 10^{15}$
3 $2 \times 10^{16}$
4 $1 \times 10^{17}$
Dual nature of radiation and Matter

142317 A beam of $450 \mathrm{~nm}$ light is incident on a metal having work function $2 \mathrm{eV}$ and placed in a magnetic field $B$. If the most energetic electrons emitted are bent into circular arc of radius 0.2 $\mathbf{m}$, find $B$.

1 $2.36 \times 10^{-4} \mathrm{~T}$
2 $1.46 \times 10^{-5} \mathrm{~T}$
3 $6.9 \times 10^{-5} \mathrm{~T}$
4 $9.2 \times 10^{-6} \mathrm{~T}$
Dual nature of radiation and Matter

142318 Photoelectric work function of a metal is $1 \mathrm{eV}$, light of wavelength $\lambda=3000 \AA$ falls on it. The photoelectrons come out with velocity

1 $10 \mathrm{~m} / \mathrm{s}$
2 $10^{2} \mathrm{~m} / \mathrm{s}$
3 $10^{4} \mathrm{~m} / \mathrm{s}$
4 $10^{6} \mathrm{~m} / \mathrm{s}$
Dual nature of radiation and Matter

142319 Ultraviolet radiation of $6.2 \mathrm{eV}$ falls on an aluminium surface. KE of fastest electorn emitted is (work function $=\mathbf{4 . 2 \mathrm { eV }}$ )

1 $3.2 \times 10^{-21} \mathrm{~J}$
2 $3.2 \times 10^{-19} \mathrm{~J}$
3 $7 \times 10^{-25} \mathrm{~J}$
4 $9 \times 10^{-32} \mathrm{~J}$
Dual nature of radiation and Matter

142316 A monochromatic source of light emits photons of frequency $6 \times 10^{14} \mathrm{~Hz}$. The power emitted by the source is $8 \times 10^{-3} \mathrm{~W}$. Calculate the number of photons emitted per second.
(Take h $=6.63 \times 10^{-34} \mathrm{~J}-\mathrm{s}$ )

1 $6 \times 10^{14}$
2 $4 \times 10^{15}$
3 $2 \times 10^{16}$
4 $1 \times 10^{17}$
Dual nature of radiation and Matter

142317 A beam of $450 \mathrm{~nm}$ light is incident on a metal having work function $2 \mathrm{eV}$ and placed in a magnetic field $B$. If the most energetic electrons emitted are bent into circular arc of radius 0.2 $\mathbf{m}$, find $B$.

1 $2.36 \times 10^{-4} \mathrm{~T}$
2 $1.46 \times 10^{-5} \mathrm{~T}$
3 $6.9 \times 10^{-5} \mathrm{~T}$
4 $9.2 \times 10^{-6} \mathrm{~T}$
Dual nature of radiation and Matter

142318 Photoelectric work function of a metal is $1 \mathrm{eV}$, light of wavelength $\lambda=3000 \AA$ falls on it. The photoelectrons come out with velocity

1 $10 \mathrm{~m} / \mathrm{s}$
2 $10^{2} \mathrm{~m} / \mathrm{s}$
3 $10^{4} \mathrm{~m} / \mathrm{s}$
4 $10^{6} \mathrm{~m} / \mathrm{s}$
Dual nature of radiation and Matter

142319 Ultraviolet radiation of $6.2 \mathrm{eV}$ falls on an aluminium surface. KE of fastest electorn emitted is (work function $=\mathbf{4 . 2 \mathrm { eV }}$ )

1 $3.2 \times 10^{-21} \mathrm{~J}$
2 $3.2 \times 10^{-19} \mathrm{~J}$
3 $7 \times 10^{-25} \mathrm{~J}$
4 $9 \times 10^{-32} \mathrm{~J}$