Einstein s Photo Electric Equation and Energy Quantity Of Radiation (KE, Vmax, Work Function)
Dual nature of radiation and Matter

142311 The kinetic energy of a $300 \mathrm{~K}$ thermal neutron is

1 $300 \mathrm{eV}$
2 $300 \mathrm{MeV}$
3 $0.026 \mathrm{eV}$
4 $0.26 \mathrm{eV}$
Dual nature of radiation and Matter

142312 The work function of a metal is $2 \mathrm{eV}$. If a radiation of wavelength 30000 ss incident on it, the maximum kinetic energy of the emitted photoelectrons is (Planck's constant $h=6.6 \times$ $10^{-34} \mathrm{Js}$; velocity of light $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} ; 1 \mathrm{eV}=$ $1.6 \times 10^{-19} \mathrm{~J}$ )

1 $4.4 \times 10^{-19} \mathrm{~J}$
2 $5.6 \times 10^{-19} \mathrm{~J}$
3 $3.4 \times 10^{-19} \mathrm{~J}$
4 $2.5 \times 10^{-19} \mathrm{~J}$
Dual nature of radiation and Matter

142313 What is the work function of a substance if photoelectrons are just ejected from a monochromatic light of wavelength $\lambda=3300 \AA$ (answer in $\mathrm{eV}$ )?

1 3.75
2 3.25
3 1.63
4 0.75
Dual nature of radiation and Matter

142314 Figure represents a graph of kinetic energy of most energetic photoelectrons, $K_{\max }$ (in $\mathrm{eV}$ ), and frequency (v) for a metal used as cathode in photoelectric experiment. The threshold frequency of light for the photoelectric emission from the metal is:

1 $1 \times 10^{14} \mathrm{~Hz}$
2 $1.5 \times 10^{14} \mathrm{~Hz}$
3 $2.1 \times 10^{14} \mathrm{~Hz}$
4 $2.7 \times 10^{14} \mathrm{~Hz}$
Dual nature of radiation and Matter

142315 The energy of a photon of wavelength $390 \mathrm{~nm}$ is nearly

1 $6.6 \mathrm{eV}$
2 $3.2 \mathrm{eV}$
3 $5.5 \mathrm{eV}$
4 $1.2 \mathrm{eV}$
Dual nature of radiation and Matter

142311 The kinetic energy of a $300 \mathrm{~K}$ thermal neutron is

1 $300 \mathrm{eV}$
2 $300 \mathrm{MeV}$
3 $0.026 \mathrm{eV}$
4 $0.26 \mathrm{eV}$
Dual nature of radiation and Matter

142312 The work function of a metal is $2 \mathrm{eV}$. If a radiation of wavelength 30000 ss incident on it, the maximum kinetic energy of the emitted photoelectrons is (Planck's constant $h=6.6 \times$ $10^{-34} \mathrm{Js}$; velocity of light $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} ; 1 \mathrm{eV}=$ $1.6 \times 10^{-19} \mathrm{~J}$ )

1 $4.4 \times 10^{-19} \mathrm{~J}$
2 $5.6 \times 10^{-19} \mathrm{~J}$
3 $3.4 \times 10^{-19} \mathrm{~J}$
4 $2.5 \times 10^{-19} \mathrm{~J}$
Dual nature of radiation and Matter

142313 What is the work function of a substance if photoelectrons are just ejected from a monochromatic light of wavelength $\lambda=3300 \AA$ (answer in $\mathrm{eV}$ )?

1 3.75
2 3.25
3 1.63
4 0.75
Dual nature of radiation and Matter

142314 Figure represents a graph of kinetic energy of most energetic photoelectrons, $K_{\max }$ (in $\mathrm{eV}$ ), and frequency (v) for a metal used as cathode in photoelectric experiment. The threshold frequency of light for the photoelectric emission from the metal is:

1 $1 \times 10^{14} \mathrm{~Hz}$
2 $1.5 \times 10^{14} \mathrm{~Hz}$
3 $2.1 \times 10^{14} \mathrm{~Hz}$
4 $2.7 \times 10^{14} \mathrm{~Hz}$
Dual nature of radiation and Matter

142315 The energy of a photon of wavelength $390 \mathrm{~nm}$ is nearly

1 $6.6 \mathrm{eV}$
2 $3.2 \mathrm{eV}$
3 $5.5 \mathrm{eV}$
4 $1.2 \mathrm{eV}$
Dual nature of radiation and Matter

142311 The kinetic energy of a $300 \mathrm{~K}$ thermal neutron is

1 $300 \mathrm{eV}$
2 $300 \mathrm{MeV}$
3 $0.026 \mathrm{eV}$
4 $0.26 \mathrm{eV}$
Dual nature of radiation and Matter

142312 The work function of a metal is $2 \mathrm{eV}$. If a radiation of wavelength 30000 ss incident on it, the maximum kinetic energy of the emitted photoelectrons is (Planck's constant $h=6.6 \times$ $10^{-34} \mathrm{Js}$; velocity of light $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} ; 1 \mathrm{eV}=$ $1.6 \times 10^{-19} \mathrm{~J}$ )

1 $4.4 \times 10^{-19} \mathrm{~J}$
2 $5.6 \times 10^{-19} \mathrm{~J}$
3 $3.4 \times 10^{-19} \mathrm{~J}$
4 $2.5 \times 10^{-19} \mathrm{~J}$
Dual nature of radiation and Matter

142313 What is the work function of a substance if photoelectrons are just ejected from a monochromatic light of wavelength $\lambda=3300 \AA$ (answer in $\mathrm{eV}$ )?

1 3.75
2 3.25
3 1.63
4 0.75
Dual nature of radiation and Matter

142314 Figure represents a graph of kinetic energy of most energetic photoelectrons, $K_{\max }$ (in $\mathrm{eV}$ ), and frequency (v) for a metal used as cathode in photoelectric experiment. The threshold frequency of light for the photoelectric emission from the metal is:

1 $1 \times 10^{14} \mathrm{~Hz}$
2 $1.5 \times 10^{14} \mathrm{~Hz}$
3 $2.1 \times 10^{14} \mathrm{~Hz}$
4 $2.7 \times 10^{14} \mathrm{~Hz}$
Dual nature of radiation and Matter

142315 The energy of a photon of wavelength $390 \mathrm{~nm}$ is nearly

1 $6.6 \mathrm{eV}$
2 $3.2 \mathrm{eV}$
3 $5.5 \mathrm{eV}$
4 $1.2 \mathrm{eV}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Dual nature of radiation and Matter

142311 The kinetic energy of a $300 \mathrm{~K}$ thermal neutron is

1 $300 \mathrm{eV}$
2 $300 \mathrm{MeV}$
3 $0.026 \mathrm{eV}$
4 $0.26 \mathrm{eV}$
Dual nature of radiation and Matter

142312 The work function of a metal is $2 \mathrm{eV}$. If a radiation of wavelength 30000 ss incident on it, the maximum kinetic energy of the emitted photoelectrons is (Planck's constant $h=6.6 \times$ $10^{-34} \mathrm{Js}$; velocity of light $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} ; 1 \mathrm{eV}=$ $1.6 \times 10^{-19} \mathrm{~J}$ )

1 $4.4 \times 10^{-19} \mathrm{~J}$
2 $5.6 \times 10^{-19} \mathrm{~J}$
3 $3.4 \times 10^{-19} \mathrm{~J}$
4 $2.5 \times 10^{-19} \mathrm{~J}$
Dual nature of radiation and Matter

142313 What is the work function of a substance if photoelectrons are just ejected from a monochromatic light of wavelength $\lambda=3300 \AA$ (answer in $\mathrm{eV}$ )?

1 3.75
2 3.25
3 1.63
4 0.75
Dual nature of radiation and Matter

142314 Figure represents a graph of kinetic energy of most energetic photoelectrons, $K_{\max }$ (in $\mathrm{eV}$ ), and frequency (v) for a metal used as cathode in photoelectric experiment. The threshold frequency of light for the photoelectric emission from the metal is:

1 $1 \times 10^{14} \mathrm{~Hz}$
2 $1.5 \times 10^{14} \mathrm{~Hz}$
3 $2.1 \times 10^{14} \mathrm{~Hz}$
4 $2.7 \times 10^{14} \mathrm{~Hz}$
Dual nature of radiation and Matter

142315 The energy of a photon of wavelength $390 \mathrm{~nm}$ is nearly

1 $6.6 \mathrm{eV}$
2 $3.2 \mathrm{eV}$
3 $5.5 \mathrm{eV}$
4 $1.2 \mathrm{eV}$
Dual nature of radiation and Matter

142311 The kinetic energy of a $300 \mathrm{~K}$ thermal neutron is

1 $300 \mathrm{eV}$
2 $300 \mathrm{MeV}$
3 $0.026 \mathrm{eV}$
4 $0.26 \mathrm{eV}$
Dual nature of radiation and Matter

142312 The work function of a metal is $2 \mathrm{eV}$. If a radiation of wavelength 30000 ss incident on it, the maximum kinetic energy of the emitted photoelectrons is (Planck's constant $h=6.6 \times$ $10^{-34} \mathrm{Js}$; velocity of light $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} ; 1 \mathrm{eV}=$ $1.6 \times 10^{-19} \mathrm{~J}$ )

1 $4.4 \times 10^{-19} \mathrm{~J}$
2 $5.6 \times 10^{-19} \mathrm{~J}$
3 $3.4 \times 10^{-19} \mathrm{~J}$
4 $2.5 \times 10^{-19} \mathrm{~J}$
Dual nature of radiation and Matter

142313 What is the work function of a substance if photoelectrons are just ejected from a monochromatic light of wavelength $\lambda=3300 \AA$ (answer in $\mathrm{eV}$ )?

1 3.75
2 3.25
3 1.63
4 0.75
Dual nature of radiation and Matter

142314 Figure represents a graph of kinetic energy of most energetic photoelectrons, $K_{\max }$ (in $\mathrm{eV}$ ), and frequency (v) for a metal used as cathode in photoelectric experiment. The threshold frequency of light for the photoelectric emission from the metal is:

1 $1 \times 10^{14} \mathrm{~Hz}$
2 $1.5 \times 10^{14} \mathrm{~Hz}$
3 $2.1 \times 10^{14} \mathrm{~Hz}$
4 $2.7 \times 10^{14} \mathrm{~Hz}$
Dual nature of radiation and Matter

142315 The energy of a photon of wavelength $390 \mathrm{~nm}$ is nearly

1 $6.6 \mathrm{eV}$
2 $3.2 \mathrm{eV}$
3 $5.5 \mathrm{eV}$
4 $1.2 \mathrm{eV}$