Einstein s Photo Electric Equation and Energy Quantity Of Radiation (KE, Vmax, Work Function)
Dual nature of radiation and Matter

142307 The energy that will be ideally radiated by a $100 \mathrm{~kW}$ transmitter in 1 hour is

1 $36 \times 10^{5} \mathrm{~J}$
2 $1 \times 10^{5} \mathrm{~J}$
3 $36 \times 10^{7} \mathrm{~J}$
4 $36 \times 10^{4} \mathrm{~J}$
Dual nature of radiation and Matter

142308 The light rays having photons of energy $1.8 \mathrm{eV}$ are falling on a metal surface having a work function $1.2 \mathrm{eV}$. What is the stopping potential to be applied to stop the emitting electrons?

1 $3 \mathrm{eV}$
2 $1.2 \mathrm{eV}$
3 $0.6 \mathrm{eV}$
4 $1.4 \mathrm{eV}$
Dual nature of radiation and Matter

142309 A photosensitive metallic surface has work function, $h v_{0}$. If photons of energy $2 h v_{0}$ fall on this surface, the electrons come out with a maximum velocity of $4 \times 10^{6} \mathrm{~m} / \mathrm{s}$. When the photon energy is increased to $5 \mathrm{hv}_{0}$, then maximum velocity of photoelectrons will be

1 $2 \times 10^{6} \mathrm{~m} / \mathrm{s}$
2 $2 \times 10^{7} \mathrm{~m} / \mathrm{s}$
3 $8 \times 10^{5} \mathrm{~m} / \mathrm{s}$
4 $8 \times 10^{6} \mathrm{~m} / \mathrm{s}$
Dual nature of radiation and Matter

142310 The work functions for metals $A, B$ and $C$ are respectively $1.92 \mathrm{eV}, \quad 2.0 \mathrm{eV}$ and $5 \mathrm{eV}$. According to Einstein's equation, the metals which will emit photoelectrons for a radiation of wave length $4100 \AA$ is/are

1 none
2 A only
3 A and B only
4 all the three metals
Dual nature of radiation and Matter

142307 The energy that will be ideally radiated by a $100 \mathrm{~kW}$ transmitter in 1 hour is

1 $36 \times 10^{5} \mathrm{~J}$
2 $1 \times 10^{5} \mathrm{~J}$
3 $36 \times 10^{7} \mathrm{~J}$
4 $36 \times 10^{4} \mathrm{~J}$
Dual nature of radiation and Matter

142308 The light rays having photons of energy $1.8 \mathrm{eV}$ are falling on a metal surface having a work function $1.2 \mathrm{eV}$. What is the stopping potential to be applied to stop the emitting electrons?

1 $3 \mathrm{eV}$
2 $1.2 \mathrm{eV}$
3 $0.6 \mathrm{eV}$
4 $1.4 \mathrm{eV}$
Dual nature of radiation and Matter

142309 A photosensitive metallic surface has work function, $h v_{0}$. If photons of energy $2 h v_{0}$ fall on this surface, the electrons come out with a maximum velocity of $4 \times 10^{6} \mathrm{~m} / \mathrm{s}$. When the photon energy is increased to $5 \mathrm{hv}_{0}$, then maximum velocity of photoelectrons will be

1 $2 \times 10^{6} \mathrm{~m} / \mathrm{s}$
2 $2 \times 10^{7} \mathrm{~m} / \mathrm{s}$
3 $8 \times 10^{5} \mathrm{~m} / \mathrm{s}$
4 $8 \times 10^{6} \mathrm{~m} / \mathrm{s}$
Dual nature of radiation and Matter

142310 The work functions for metals $A, B$ and $C$ are respectively $1.92 \mathrm{eV}, \quad 2.0 \mathrm{eV}$ and $5 \mathrm{eV}$. According to Einstein's equation, the metals which will emit photoelectrons for a radiation of wave length $4100 \AA$ is/are

1 none
2 A only
3 A and B only
4 all the three metals
Dual nature of radiation and Matter

142307 The energy that will be ideally radiated by a $100 \mathrm{~kW}$ transmitter in 1 hour is

1 $36 \times 10^{5} \mathrm{~J}$
2 $1 \times 10^{5} \mathrm{~J}$
3 $36 \times 10^{7} \mathrm{~J}$
4 $36 \times 10^{4} \mathrm{~J}$
Dual nature of radiation and Matter

142308 The light rays having photons of energy $1.8 \mathrm{eV}$ are falling on a metal surface having a work function $1.2 \mathrm{eV}$. What is the stopping potential to be applied to stop the emitting electrons?

1 $3 \mathrm{eV}$
2 $1.2 \mathrm{eV}$
3 $0.6 \mathrm{eV}$
4 $1.4 \mathrm{eV}$
Dual nature of radiation and Matter

142309 A photosensitive metallic surface has work function, $h v_{0}$. If photons of energy $2 h v_{0}$ fall on this surface, the electrons come out with a maximum velocity of $4 \times 10^{6} \mathrm{~m} / \mathrm{s}$. When the photon energy is increased to $5 \mathrm{hv}_{0}$, then maximum velocity of photoelectrons will be

1 $2 \times 10^{6} \mathrm{~m} / \mathrm{s}$
2 $2 \times 10^{7} \mathrm{~m} / \mathrm{s}$
3 $8 \times 10^{5} \mathrm{~m} / \mathrm{s}$
4 $8 \times 10^{6} \mathrm{~m} / \mathrm{s}$
Dual nature of radiation and Matter

142310 The work functions for metals $A, B$ and $C$ are respectively $1.92 \mathrm{eV}, \quad 2.0 \mathrm{eV}$ and $5 \mathrm{eV}$. According to Einstein's equation, the metals which will emit photoelectrons for a radiation of wave length $4100 \AA$ is/are

1 none
2 A only
3 A and B only
4 all the three metals
Dual nature of radiation and Matter

142307 The energy that will be ideally radiated by a $100 \mathrm{~kW}$ transmitter in 1 hour is

1 $36 \times 10^{5} \mathrm{~J}$
2 $1 \times 10^{5} \mathrm{~J}$
3 $36 \times 10^{7} \mathrm{~J}$
4 $36 \times 10^{4} \mathrm{~J}$
Dual nature of radiation and Matter

142308 The light rays having photons of energy $1.8 \mathrm{eV}$ are falling on a metal surface having a work function $1.2 \mathrm{eV}$. What is the stopping potential to be applied to stop the emitting electrons?

1 $3 \mathrm{eV}$
2 $1.2 \mathrm{eV}$
3 $0.6 \mathrm{eV}$
4 $1.4 \mathrm{eV}$
Dual nature of radiation and Matter

142309 A photosensitive metallic surface has work function, $h v_{0}$. If photons of energy $2 h v_{0}$ fall on this surface, the electrons come out with a maximum velocity of $4 \times 10^{6} \mathrm{~m} / \mathrm{s}$. When the photon energy is increased to $5 \mathrm{hv}_{0}$, then maximum velocity of photoelectrons will be

1 $2 \times 10^{6} \mathrm{~m} / \mathrm{s}$
2 $2 \times 10^{7} \mathrm{~m} / \mathrm{s}$
3 $8 \times 10^{5} \mathrm{~m} / \mathrm{s}$
4 $8 \times 10^{6} \mathrm{~m} / \mathrm{s}$
Dual nature of radiation and Matter

142310 The work functions for metals $A, B$ and $C$ are respectively $1.92 \mathrm{eV}, \quad 2.0 \mathrm{eV}$ and $5 \mathrm{eV}$. According to Einstein's equation, the metals which will emit photoelectrons for a radiation of wave length $4100 \AA$ is/are

1 none
2 A only
3 A and B only
4 all the three metals
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here