Domain, Co-domain and Range of Function
Sets, Relation and Function

117442 Let \(f: N \rightarrow N\) be a function such that \(f(m+n)=\) \(f(m)+f(n)\) for every \(m, n \in N\). If \(f(6)=18\), then \(f(2) . f(3)\) is equal to

1 6
2 54
3 18
4 36
Sets, Relation and Function

117444 The number of integers satisfying the inequality \(\left|\mathrm{n}^2-100\right|\lt \mathbf{5 0}\) is

1 5
2 6
3 12
4 8
5 10
Sets, Relation and Function

117445 The solution set of the rational inequality \(\frac{x+9}{x-6} \leq 0\) is

1 \((-\infty, 9) \cup(6, \infty)\)
2 \((-\infty, 9] \cup(6, \infty)\)
3 \((-\infty, 9] \cup[6, \infty)\)
4 \([-9,6)\)
5 \((-9,6]\)
Sets, Relation and Function

117446 The domain of the function \(f\) given by \(f(x)=\sqrt{x-1}\) is

1 \((-\infty, \infty)\)
2 \((1, \infty)\)
3 \([1, \infty)\)
4 \([0, \infty)\)
5 \((0, \infty)\)
Sets, Relation and Function

117447 The domain of definition of the function \(f(x)=\) \(\frac{\log _3(x+7)}{x^2-5 x+6}\) is

1 \((-7, \infty) /\{3,2\}\)
2 \((-3, \infty) /\{3,2\}\)
3 \((-7, \infty) /\{3\}\)
4 \((-3, \infty) /\{3\}\)
5 \((-5, \infty) /\{3\}\)
Sets, Relation and Function

117442 Let \(f: N \rightarrow N\) be a function such that \(f(m+n)=\) \(f(m)+f(n)\) for every \(m, n \in N\). If \(f(6)=18\), then \(f(2) . f(3)\) is equal to

1 6
2 54
3 18
4 36
Sets, Relation and Function

117444 The number of integers satisfying the inequality \(\left|\mathrm{n}^2-100\right|\lt \mathbf{5 0}\) is

1 5
2 6
3 12
4 8
5 10
Sets, Relation and Function

117445 The solution set of the rational inequality \(\frac{x+9}{x-6} \leq 0\) is

1 \((-\infty, 9) \cup(6, \infty)\)
2 \((-\infty, 9] \cup(6, \infty)\)
3 \((-\infty, 9] \cup[6, \infty)\)
4 \([-9,6)\)
5 \((-9,6]\)
Sets, Relation and Function

117446 The domain of the function \(f\) given by \(f(x)=\sqrt{x-1}\) is

1 \((-\infty, \infty)\)
2 \((1, \infty)\)
3 \([1, \infty)\)
4 \([0, \infty)\)
5 \((0, \infty)\)
Sets, Relation and Function

117447 The domain of definition of the function \(f(x)=\) \(\frac{\log _3(x+7)}{x^2-5 x+6}\) is

1 \((-7, \infty) /\{3,2\}\)
2 \((-3, \infty) /\{3,2\}\)
3 \((-7, \infty) /\{3\}\)
4 \((-3, \infty) /\{3\}\)
5 \((-5, \infty) /\{3\}\)
Sets, Relation and Function

117442 Let \(f: N \rightarrow N\) be a function such that \(f(m+n)=\) \(f(m)+f(n)\) for every \(m, n \in N\). If \(f(6)=18\), then \(f(2) . f(3)\) is equal to

1 6
2 54
3 18
4 36
Sets, Relation and Function

117444 The number of integers satisfying the inequality \(\left|\mathrm{n}^2-100\right|\lt \mathbf{5 0}\) is

1 5
2 6
3 12
4 8
5 10
Sets, Relation and Function

117445 The solution set of the rational inequality \(\frac{x+9}{x-6} \leq 0\) is

1 \((-\infty, 9) \cup(6, \infty)\)
2 \((-\infty, 9] \cup(6, \infty)\)
3 \((-\infty, 9] \cup[6, \infty)\)
4 \([-9,6)\)
5 \((-9,6]\)
Sets, Relation and Function

117446 The domain of the function \(f\) given by \(f(x)=\sqrt{x-1}\) is

1 \((-\infty, \infty)\)
2 \((1, \infty)\)
3 \([1, \infty)\)
4 \([0, \infty)\)
5 \((0, \infty)\)
Sets, Relation and Function

117447 The domain of definition of the function \(f(x)=\) \(\frac{\log _3(x+7)}{x^2-5 x+6}\) is

1 \((-7, \infty) /\{3,2\}\)
2 \((-3, \infty) /\{3,2\}\)
3 \((-7, \infty) /\{3\}\)
4 \((-3, \infty) /\{3\}\)
5 \((-5, \infty) /\{3\}\)
Sets, Relation and Function

117442 Let \(f: N \rightarrow N\) be a function such that \(f(m+n)=\) \(f(m)+f(n)\) for every \(m, n \in N\). If \(f(6)=18\), then \(f(2) . f(3)\) is equal to

1 6
2 54
3 18
4 36
Sets, Relation and Function

117444 The number of integers satisfying the inequality \(\left|\mathrm{n}^2-100\right|\lt \mathbf{5 0}\) is

1 5
2 6
3 12
4 8
5 10
Sets, Relation and Function

117445 The solution set of the rational inequality \(\frac{x+9}{x-6} \leq 0\) is

1 \((-\infty, 9) \cup(6, \infty)\)
2 \((-\infty, 9] \cup(6, \infty)\)
3 \((-\infty, 9] \cup[6, \infty)\)
4 \([-9,6)\)
5 \((-9,6]\)
Sets, Relation and Function

117446 The domain of the function \(f\) given by \(f(x)=\sqrt{x-1}\) is

1 \((-\infty, \infty)\)
2 \((1, \infty)\)
3 \([1, \infty)\)
4 \([0, \infty)\)
5 \((0, \infty)\)
Sets, Relation and Function

117447 The domain of definition of the function \(f(x)=\) \(\frac{\log _3(x+7)}{x^2-5 x+6}\) is

1 \((-7, \infty) /\{3,2\}\)
2 \((-3, \infty) /\{3,2\}\)
3 \((-7, \infty) /\{3\}\)
4 \((-3, \infty) /\{3\}\)
5 \((-5, \infty) /\{3\}\)
Sets, Relation and Function

117442 Let \(f: N \rightarrow N\) be a function such that \(f(m+n)=\) \(f(m)+f(n)\) for every \(m, n \in N\). If \(f(6)=18\), then \(f(2) . f(3)\) is equal to

1 6
2 54
3 18
4 36
Sets, Relation and Function

117444 The number of integers satisfying the inequality \(\left|\mathrm{n}^2-100\right|\lt \mathbf{5 0}\) is

1 5
2 6
3 12
4 8
5 10
Sets, Relation and Function

117445 The solution set of the rational inequality \(\frac{x+9}{x-6} \leq 0\) is

1 \((-\infty, 9) \cup(6, \infty)\)
2 \((-\infty, 9] \cup(6, \infty)\)
3 \((-\infty, 9] \cup[6, \infty)\)
4 \([-9,6)\)
5 \((-9,6]\)
Sets, Relation and Function

117446 The domain of the function \(f\) given by \(f(x)=\sqrt{x-1}\) is

1 \((-\infty, \infty)\)
2 \((1, \infty)\)
3 \([1, \infty)\)
4 \([0, \infty)\)
5 \((0, \infty)\)
Sets, Relation and Function

117447 The domain of definition of the function \(f(x)=\) \(\frac{\log _3(x+7)}{x^2-5 x+6}\) is

1 \((-7, \infty) /\{3,2\}\)
2 \((-3, \infty) /\{3,2\}\)
3 \((-7, \infty) /\{3\}\)
4 \((-3, \infty) /\{3\}\)
5 \((-5, \infty) /\{3\}\)